導航:首頁 > 英國資訊 > 英國大學里哪裡有開爾文實驗室

英國大學里哪裡有開爾文實驗室

發布時間:2022-06-24 16:29:58

① 格拉斯哥大學

格拉斯哥大學(簡稱:哥大,英語:University of Glasgow),位於英國蘇格蘭格拉斯哥,創立於1451年,是蘇格蘭歷史第二悠久、全英國校齡第四的一所久負盛名的公立大學。在近六個世紀的發展過程中,格拉斯哥大學培養出許多知名人物,其中不僅包括「經濟學之父」亞當•斯密,首先提出熱力學溫標概念的開爾文,蒸汽機的改良者詹姆斯•瓦特,電磁學理論的建立者麥克斯韋,以及外科手術消毒技術創立者約瑟夫•李斯特等,更培養出四名現代高等教育大學的創始人,另外,近幾十年格拉斯哥大學還培養出六位諾貝爾獎獲得者。
格拉斯哥大學,同時也是是國際大學組織Universitas 21的締造者之一 ,以及英國大學集團羅素集團(Russell Group)的締約成員。
據英國薩頓研究機構於2006年所作研究,格拉斯哥大學同時也是英國接受社會捐款最多的四所大學之一,2006年捐款額達到1億2千萬英鎊,每年接受的學生數量也位於全英第五名。格拉斯哥大學,是國際大學組織Universitas 21的締造者之一,該大學同時也是英國精英大學集團羅素集團的締約成員。
格拉斯哥大學校區分布哥市的各個地點,其今日的主校區位於格拉斯哥的西區Gilmorehill位置,此外,在蘇格蘭的格萊頓地區(Crichton)也有該校的分支研究機構。
2006年2月,格拉斯哥大學總共有19,500名大學部學生與4,000名研究所學生,教職員5,800人。在5,800教職員工中,有3,400名專業研究人士,格拉斯哥大學每年的研究收入高達7千5百萬英鎊(2003年)。此外,該校包括心理學、生物學、醫學、商業、經濟學、管理學、法律、工程學(航太工程、海洋工程、電子工程)等在內的90%的專業在2005年的全英研究評估(Research Assessment Exercise, RAE)中被評為滿分5+或者5分。
該校同時也是有英國《泰晤士報》評選的全球前100名最優秀的大學之一。
著名校友

* 亞當•斯密,哲學家和經濟學家,經濟學之父,《國富論》和《道德情操論》作者
* 開爾文,原名W.湯姆孫,著名物理學家、發明家,熱力學溫標概念首先提出者
* 詹姆斯•瓦特,機械學家,工程學家,蒸汽機的改良者
* 麥克斯韋,物理學家,經典電動力學的創始人,統計物理學的奠基人之一
* 約瑟夫•李斯特,外科手術消毒技術創立者
* John Grierson,電影製作人,記錄片的創始人
* 約翰•貝爾德,電視的發明者
* George William Gray,葯學家,液晶體發現者,東京都獎獲得者
* Sir Derek Barton,1969年諾貝爾化學獎獲得者
* Sir James Black,1988年諾貝爾醫學獎獲得者
* John Boyd Orr,1949年諾貝爾和平獎獲得者,一等Boyd-Orr男爵,生物學家
* Sir William Ramsay,1904年諾貝爾化學獎獲得者
* Frederick Soddy,1921年諾貝爾化學獎獲得者
* Alexander R. Todd, Todd男爵,1957年諾貝爾化學獎獲得者
* James McGill,加拿大麥克吉爾大學創立人,永久名譽校長,慈善家
這個學校首推商學院哦 會計專業在歐洲排名前10,在英國前5名的

② 英國名校有哪些大學

英國名校:

1、牛津大學

牛津大學位於英國牛津,是一所公立研究型大學,採用傳統學院制。是羅素大學集團成員,被譽為金三角名校和G5。牛津大學的具體建校時間已不可考,但有檔案明確記載的最早的授課時間為1096年,之後在1167年因得到了英國王室的大力支持而快速發展。

倫敦國王學院1829年由英王喬治四世和首相惠靈頓公爵在倫敦泰晤士河畔創立,是英格蘭第四古老的大學。倫敦國王學院的臨床醫學領域在2022THE世界大學學科排名12位,其中牙科學算是其王牌專業。其次,其人文藝術領域在2022THE世界大學學科排名也較靠前,在26位,其哲學、傳媒、歷史、文學、政治專業都是較為優勢的項目。


以上內容參考:網路-英國大學排名

③ 請問有誰知道世界上最著名的實驗室

二十世紀世界著名實驗室簡介

進入二十世紀,各類物理實驗室如雨後春筍,研究工作廣泛開展。可以說,實驗室是科學的搖籃,是科學研究的基地。下面選取若干有代表性的,對科學發展起過或正在起重要作用的物理實驗室,分別作些介紹。

第一類是建立在大學裡面,附屬於大學的實驗室。除了英國劍橋大學的卡文迪什實驗室以外,還可以舉出許多,其中著名的有莫斯科大學的物理實驗室,荷蘭萊頓大學的低溫實驗室,美國哈佛大學的傑佛遜(Jefferson)物理實驗室,加州伯克利分校的勞倫斯輻射實驗室,英國曼徹斯特大學的物理實驗室。它們大都以基礎研究為主,各有特長。例如:

一、荷蘭的萊頓低溫實驗室

二十世紀初,這個實驗室在昂納斯(K.Onnes)領導下,在低溫領域獨占鰲頭,最先實現了氦的液化,發現了超導電性,並一直在低溫和超導領域居領先地位。特別是它以大規模工業技術發展實驗室,開創了大科學的新紀元。荷蘭是一個工業小國,荷蘭萊頓低溫實驗室的經驗特別值得我們學習和借鑒。

二、美國加州大學伯克利分校的勞倫斯輻射實驗室

它是電子直線加速器的發源地,創建於30年代,當時正值經濟蕭條時期,創建人勞倫斯以其特有的組織才能,充分發掘美國的人力、物力和財力,建起了第一批加速器。在他的領導組織下,實驗室成員開展了廣泛的科學研究,發現了一系列超重元素,開辟了放射性同位素、重離子科學等研究方向。它是美國一系列著名實驗室:Livermore,Los Alamos,Brookhaven等實驗室的先驅,也是世界上成百所加速器實驗室的楷模。

第二類實驗室屬於國家機構,有的甚至是國際機構,由好幾個國家聯合承辦。它們大多從事於基本計量,高精尖項目,超大型的研究課題,和國防軍事任務。例如:

三、德國的帝國技術物理研究所(簡稱PTR)

帝國技術物理研究所建於1884年,相當於德國的國家計量局,以精密測量熱輻射著稱。十九世紀末該研究所的研究人員致力於黑體輻射的研究,導致了普朗克發現作用量子。可以說這個實驗室是量子論的發源地。

四、英國國家物理實驗室(簡稱NPL)

英國的國家物理實驗室,是英國歷史悠久的計量基準研究中心,創建於1900年。

1981年分6個部:即電氣科學、材料應用、力學與光學計量、數值分析與計算機科學、量子計量、輻射科學與聲學。

作為高度工業化國家的計量中心,與全國工業、政府各部門、商業機構有著廣泛的日常聯系,對外則作為國家代表機構,與各國際組織、各國計量中心聯系。它還對環境保護,例如雜訊、電磁輻射、大氣污染等方面向政府提供建議。英國國家物理實驗室共有科技人員約1000人,1969年最高達1800人。

五、歐洲核子研究中心(簡稱CERN)

歐洲核子研究中心創立於1954年,是規模最大的一個國際性的實驗組織。它的創建、方針、組織、選題、經費和研究計劃的執行,都很有特點。1983年在這里發現W±和Z0粒子,次年該中心兩位物理學家魯比亞和范德梅爾獲諾貝爾物理獎。

歐洲核子研究中心是在聯合國教科文組織的倡導下,由歐洲11個國家從1951年開始籌劃,現已有13個成員國。經費由各成員國分攤,所長由理事會任命,任期5年。下設管理委員會、研究委員會和實驗委員會,組織精幹,管理完善。人員共達6000人,多為招聘制。三十餘年來,先後建成質子同步迴旋加速器、質子同步加速器、交叉儲存環(ISR)、超質子同步加速器(SPS)、大型正負電子對撞機(LEP)、並擁有世界上最大的氫氣泡室(BEBL)。

歐洲核子研究中心作為國際性實驗機構,擁有雄厚的財力、物力和技術力量。由於工作涉及許多國家和組織,在建設和研究中難免會出現種種矛盾和磨擦,但經過協商和合作,工作進行順利,龐大計劃都能按時兌現,接連不斷取得舉世矚目的成就(參見:高能物理,1985年第3期,第26頁)。

第三類實驗室直接歸屬於工業企業部門,為工業技術的開發與研究服務。其中最著名的有貝爾實驗室和IBM研究實驗室。

六、貝爾實驗室

貝爾實驗室原名貝爾電話實驗室,成立於1925年,是一所最有影響的由工業企業經營的研究實驗室。主要宗旨是進行通訊科學的研究,有研究人員20000人,下屬6個研究部,共14個分部,56個實驗室,每年經費達22億美元,其中10%用於基礎研究。除了無線電電子學以外,在固體物理學(其中包括磁學、半導體、表面物理學)、天體物理學、量子物理學和核物理學等方面都有很高水平。在這個研究機構中擁有一大批高水平的科研人員,幾十年來獲得諾貝爾物理獎的先後有:發明電子衍射的戴維森,發明晶體管的肖克利、巴丁和布拉坦,發明激光器的湯斯和肖洛,理論物理學家安德遜,射電天文學家彭齊亞斯和威爾遜。

貝爾實驗室的經驗很值得注意。工業企業對科學研究,特別是對基礎研究的重視;開發和研究二位一體;領導有遠見有魄力,善於抓住有生命力的新課題,這些都是有益的經驗。

七、IBM研究實驗室

IBM是International Bisiness Machines Corporation(美國國際商用機器公司)的簡稱,現已發展成為跨國公司,在計算機生產與革新中居世界領先地位。它創建於1911年,原名Computing-Tabulating-Recording Co.(C.T.R.),是由三家生產統計機械、時間記錄器的公司組成。這些公司分別創建於1889、1890、1891年。1984年底,IBM公司的雇員超過39000人,業務遍及130個國家。

IBM研究實驗室也叫IBM研究部,共有研究人員3500人,(還吸收許多博士後和訪問學者參加工作),專門從事基礎科學研究,並探索與產品有關的技術,其特點是將這兩者結合在一起。科學家在這里工作,一方面推進基礎科學,一方面提出對實際應用有益的科學新思想。研究部下屬四個研究中心:

(1)在美國紐約的Thomas J.Watson研究中心。從事計算機科學、輸入/輸出技術、生產性研究數學、物理學、記憶和邏輯等方面的研究。其中物理學包括:凝聚態物理、超微結構、材料科學、顯微技術、表面物理、激光物理以至天文學和基本粒子。

(2)在美國加州的Almaden研究中心。除了計算機科學以外,還進行高溫超導、等離子體、掃描隧道顯微鏡和同步輻射等研究。

(3)瑞士Zurich研究中心。重點是激光科學與技術,特別是半導體激光器、光學儲存、光電材料、分子束外延、高溫超導、超顯微技術等方面,還進行信息處理等計算機科學研究。

(4)日本東京研究中心。內分計算機科學研究所、新技術研究所和東京科學中心,主要是結合計算機的生產和革新進行研究。

進入80年代,IBM研究中心成績斐然,兩屆諾貝爾物理獎都被它的成員奪得:一是因發明掃描隧道顯微鏡,賓尼格(G.K.Ginnig)與羅勒爾(H.Rohrer)共獲1986年諾貝爾物理獎的一半,二是因發現金屬氧化物的高溫超導電性,柏諾茲(J.G.Bednorz)和繆勒(K.A.Müller)共獲1987年獎。

http://218.24.233.167:8000/Resource/GZ/GZWL/WLBL/WLXS/wl100019zw_0116.htm

④ 英國留學有哪些學校

一、劍橋大學

劍橋大學(University of Cambridge;勛銜:Cantab),是一所世界頂尖的公立研究型大學,採用書院聯邦制。

坐落於英國劍橋。其與牛津大學並稱為牛劍,是羅素大學集團成員,被譽為「金三角名校」和「G5超級精英大學」。

劍橋大學是英語世界中第二古老的大學,前身是一個於1209年成立的學者協會。

八百多年的校史匯聚了艾薩克·牛頓、開爾文、麥克斯韋、玻爾、玻恩、狄拉克、奧本海默、霍金、達爾文、沃森、克里克、馬爾薩斯、馬歇爾、凱恩斯、圖靈、懷爾斯。

華羅庚等科學巨匠,約翰·彌爾頓、拜倫、丁尼生、培根、羅素、維特根斯坦等文哲大師,克倫威爾、尼赫魯。

李光耀等政治人物以及羅伯特·沃波爾(首任)在內的15位英國首相。截止2019年10月,共有120位諾貝爾獎得主(世界第二)、11位菲爾茲獎得主(世界第六)、7點陣圖靈獎得主(世界第八)曾在此學習或工作。



參考資料來源:網路——劍橋大學

參考資料來源:網路——牛津大學

參考資料來源:網路——倫敦大學學院

參考資料來源:網路——帝國理工學院

參考資料來源:網路——愛丁堡大學

⑤ 誰有科學家的名字,他們的發現,提出的問題,怎樣解決的,和結果

朱棣文院士於民國卅七年二月二八日生,籍貫為 江蘇省太倉縣。專習物理應用物理(原子物理); 1970年畢業於羅徹斯特大學,獲數學學士和物理 學學士;1976年獲加州大學伯克利分校物理學博 士。博士論文是〃原子鉈的禁戒M1躍遷 62P1/2- 72P1/2 的測量〃,博士指導老師是康明斯教授。 目前現職於美國史丹福大學物理學和應用物理教 授授。

得獎作品

發展利用雷射冷卻與捕捉原子方法

對科學研究之影響

用類似的技術,還可以用來研究DNA或者其他聚合鏈的機械性質。當年他還在貝爾實驗室時就發明了一種「光學鑷子」(optical tweezer),這有點像星際大戰中的拖曳光束,可以用雷射來操縱微小物質,包過細菌、DNA等等。他們也研究過號稱為「分子馬達」(molecular motor) 的肌蛋白細胞的收縮。此技術當然也可以在不破壞細胞膜的情況下,操控細胞內的物質,或在密閉容器內處理稀有元素或者放射性元素了。
丁肇中

(2004-02-06)

丁肇中祖籍山東日照縣;1936年出生於美國密西根州安阿堡(Ann Arbor);父親是丁觀海,母親是王雋英,他在台北讀中學,在密西根大學讀大學本科與研究院,於1962年獲博士學位;自1967年起執教於麻省理工學院。丁教授在粒子物理學中有許多卓著的貢獻,最有名的是1974年J粒子的發現,這項發現導致粒子物理學走入了新的方向,也因此而獲得1976年諾具爾物理獎。 此外,他對量子電動力學之精確性、輕子的性質、矢量粒子的性質、膠子噴注現象,Z-γ之干涉等問題的研究都是十分重要的貢獻。 近年來丁教授組成並領導一實驗組,積極建造L3探測器,將於1988年起在西歐中心(CERN)的LEP加速器上做實驗,這是一項極大的計劃,動員了世界各國四百多名實驗物理學者,探測器建造費用將超過一億美元。丁教授是當代最傑出的實驗物理學家之一。他的工作特徵是方向明確果斷,計劃周詳嚴謹。

得獎作品

發現新的重基本粒子:J/Ψ粒子(現稱J粒子)

楊振寧

(2004-02-06)

安徽省合肥縣人,民國十一年八月二十二日出生。一九二八年就讀廈門國小、一九三三年就讀北平崇德中學、一九三八年插班昆明昆萬中學高中二年級、並以高二的同等學歷,考取當時由清華、北大、南開三個大學合並的西南聯大的化學系,後來改念物理系。一九四二年西南聯大畢業、一九四四年西南聯大研究所畢業、一九四五年在西南聯大附中教學後赴美、一九四八年夏完成芝加哥大學博士學位一九四九年秋天普林斯頓大學研究、一九五七年獲諾貝爾物理獎、一九五八年當選中央研究院院士、一九六五年應紐約州立大學校長托爾邀請籌備創立石溪分校研究部門、一九六六年離普林斯頓赴紐約州立大學石溪分校主持物理研究所,擔任教授至今。

一九五七年,和李政道合作推翻了愛因斯坦的「宇稱守恆定律」,獲得諾貝爾物理獎學金。他們這項貢獻得到極高評價,被認為是物理學上的里程碑之一。盡管他們早已入了美籍,但也是「美籍華人」,消息傳來,中國人無不引以為傲。楊氏也是以曾經接受中國文化的薰陶為自傲的,那年他們在接受諾貝爾獎金的時候,由他代表致辭,最後一段,他說:「我深深察覺到一樁事實,這就是:在廣義上說,我是中華文化和西方文化的產物,既是雙方和諧的產物,又是雙方沖突的產物,我願意說我既以我的中國傳統為驕傲,同樣的,我又專心致於現代科學。」 在教了十七年書之後,楊氏於一九六六年,離開普林斯頓大學,前往紐約州立大學石溪分校主持理論物理研究所的研究工作。他認為是自己「走出象牙塔」,重新出發,科學界人士對他再度獲得諾貝爾獎的可能性,抱持期待與樂觀。楊夫人杜致禮女士,出生名門,為杜聿明將軍掌珠,專攻文學,中英文造詣均佳,曾在台灣教過英文,在美國紐約州立大學石溪分校教中文,言談舉止富書卷氣,育子女三人,老大楊光諾電腦工程師,老二楊光宇,化學家,楊又禮,醫生。

得獎作品

發現弱相互作用宇稱不守恆原理:宇稱守恆如在弱相互作用中不成立,宇稱概念就不能用在θ和τ粒子的衰變過程中,因此可以認為θ和τ粒子是同一粒子。

對科學研究之影響

楊振寧和李政道的理論,推翻了物理學上屹立不移三十年之久的宇稱守恆定律。這一發現,使瑞典皇家科學院立即將一九五七年 的諾貝爾物理獎,頒發給楊振寧和李政道兩位博士,因為他們指正了過去科學家所犯的嚴重錯誤,更開啟基本粒子「弱交換作用」一些規則的研究,使人類對物 質構造內層的認識邁進一大步。

卡文迪什(Henry Cavendish)

(2004-02-06)

卡文迪什(Henry Cavendish)英國物理學家和化學家。1731年10月10日生於法國尼斯。1749年考人劍橋大學,1753年尚未畢業就去巴黎留學。後回倫敦定居,在他父親的實驗室中做了許多電學和化學方面的研究工作。1760年被選為英國皇家學會會員。1803年當選為法國科學院外國院土。卡文迪什畢生致力於科學研究,從事實驗研究達50年之久,性格孤僻,很少與外界來往。卡文迪什的主要貢獻有:1781年首先製得氫氣,並研究了其性質,用實驗證明它燃燒後生成水。但他曾把發現的氫氣誤認為燃素,不能不說是一大憾事。1785年卡文迪什在空氣中引入電火花的實驗使他發現了一種不活潑的氣體的存在。他在化學、熱學、電學、萬有引力等方面進行地行多成功的實驗研究,但很少發表,過了一個世紀後,麥克斯韋整理了他的實驗論文,並於1879年出版了名為《尊敬的亨利·卡文迪什的電學研究》一書,此後人們才知道卡文迪什做了許多電學實驗。麥克斯韋說:「這些論文證明卡文迪什幾乎預料到電學上所有的偉大事實,這些偉大的事實後來通過庫侖和法國哲學家們的著作而聞名於科學界。」

早在庫侖之前,卡文迪什已經研究了電荷在導體上的分布問題。1777年,他向皇家學會提出報告說:「電的吸引力和排斥力很可能反比於電荷間距離的平方,如果是這樣的話,那麼物體中多餘的電幾乎全部堆積在緊靠物體表面的地方,而且這些電緊緊地壓在一起,物體的其餘部分處於中性狀態。」他還通過實驗證明電荷之間的作用力。他還早於法拉第用實驗證明電容器的電容取決於兩極板之間的物質。他最早建立電勢概念,指出導體兩端的電勢與通過它的電流成正比(歐姆定律在1827年才確立)。當時還無法測量電流強度,據說他勇敢地用自己的身體當作測量儀器,以從手指到手臂何處感到電振動來估計電流的強弱。

卡文迪什的重大貢獻之一是1798年完成了測量萬有引力的扭秤實驗,後世稱為卡文迪什實驗。他改進了英國機械師米歇爾(John Michell,1724~1793)設計的扭秤,在其懸線系統上附加小平面鏡,利用望遠鏡在室外遠距離操縱和測量,防止了空氣的擾動(當時還沒有真空設備)。他用一根39英寸的鍍銀銅絲吊一6英尺木桿,桿的兩端各固定一個直徑2英寸的小鉛球,另用兩顆直徑12英寸的固定著的大鉛球吸引它們,測出鉛球間引力引起的擺動周期,由此計算出兩個鉛球的引力,由計算得到的引力再推算出地球的質量和密度。他算出的地球密度為水密度的5.481倍(地球密度的現代數值為5.517g/cm3),由此可推算出萬有引力常量G的數值為 6.754×10-11 Nm2/kg2(現代值前四位數為6.672)。這一實驗的構思、設計與操作十分精巧,英國物理學家J.H.坡印廷曾對這個實驗下過這樣的評語:「開創了弱力測量的新時代」。

卡文迪什在1766年發表了《論人工空氣》的論文並獲皇家學會科普利獎章。他制出純氧,並確定了空氣中氧、氮的含量,證明水不是元素而是化合物。他被稱為「化學中的牛頓」。

卡文迪什一生在自己的實驗室中工作,被稱為「最富有的學者,最有學問的富翁」。卡文迪什於1810年2月24日去世。

後來,他的後代親屬德文郡八世公爵S.C.卡文迪什將自己的一筆財產捐贈劍橋大學於1871年建成實驗室,它最初是以 H.卡文迪什命名的物理系教學實驗室,後來實驗室擴大為包括整個物理系在內的科研與教育中心,並以整個卡文迪什家族命名。該中心注重獨立的、系統的、集團性的開拓性實驗和理論探索,其中關鍵性設備都提倡自製。近百年來卡文迪什實驗室培養出的諾貝爾獎金獲得者已達26人。麥克斯韋、瑞利、J.J.湯姆孫、盧瑟福等先後主持過該實驗室。

開爾文

(2004-02-06)

開爾文是英國著名物理學家、發明家,原名W.湯姆孫。他是本世紀的最偉大的人物之一,是一個偉大的數學物理學家兼電學家。他被看作英帝國的第一位物理學家,同時受到世界其他國家的贊賞。他的一生獲得了一切可能給予的榮譽。而他也無愧於這一切,這是他在漫長的一生中所作的實際努力而獲得的。這些努力使他不僅有了名望和財富,而且贏得了廣泛的聲譽。

1824年6月26日開爾文生於愛爾蘭的貝爾法斯特。他從小聰慧好學,10歲時就進格拉斯哥大學預科學習。17歲時,曾立志:「科學領路到哪裡,就在哪裡攀登不息」。1845年畢業於劍橋大學,在大學學習期間曾獲蘭格勒獎金第二名,史密斯獎金第一名。畢業後他赴巴黎跟隨物理學家和化學家V.勒尼奧從事實驗工作一年,1846年受聘為格拉斯哥大學自然哲學(物理學當時的別名)教授,任職達53年之久。由於裝設第一條大西洋海底電纜有功,英政府於1866年封他為爵士,並於1892年晉升為開爾文勛爵,開爾文這個名字就是從此開始的。1890~1895年任倫敦皇家學會會長。1877年被選為法國科學院院士。1904年任格拉斯哥大學校長,直到1907年12月17日在蘇格蘭的內瑟霍爾逝世為止。

開爾文研究范圍廣泛,在熱學、電磁學、流體力學、光學、地球物理、數學、工程應用等方面都做出了貢獻。他一生發表論文多達600餘篇,取得70種發明專利,他在當時科學界享有極高的名望,受到英國本國和歐美各國科學家、科學團體的推崇。他在熱學、電磁學及它們的工程應用方面的研究最為出色。

開爾文是熱力學的主要奠基人之一,在熱力學的發展中作出了一系列的重大貢獻。他根據蓋-呂薩克、卡諾和克拉珀龍的理論於1848年創立了熱力學溫標。他指出:「這個溫標的特點是它完全不依賴於任何特殊物質的物理性質。」這是現代科學上的標准溫標。他是熱力學第二定律的兩個主要奠基人之一(另一個是克勞修斯),1851年他提出熱力學第二定律:「不可能從單一熱源吸熱使之完全變為有用功而不產生其他影響。」這是公認的熱力學第二定律的標准說法。並且指出,如果此定律不成立,就必須承認可以有一種永動機,它藉助於使海水或土壤冷卻而無限制地得到機械功,即所謂的第二種永動機。他從熱力學第二定律斷言,能量耗散是普遍的趨勢。1852年他與焦耳合作進一步研究氣體的內能,對焦耳氣體自由膨脹實驗作了改進,進行氣體膨脹的多孔塞實驗,發現了焦耳-湯姆孫效應,即氣體經多孔塞絕熱膨脹後所引起的溫度的變化現象。這一發現成為獲得低溫的主要方法之一,廣泛地應用到低溫技術中。1856年他從理論研究上預言了一種新的溫差電效應,即當電流在溫度不均勻的導體中流過時,導體除產生不可逆的焦耳熱之外,還要吸收或放出一定的熱量(稱為湯姆孫熱)。這一現象後叫湯姆孫效應。

在電學方面,湯姆孫以極高明的技巧研究過各種不同類型的問題,從靜電學到瞬變電流。他揭示了傅里葉熱傳導理論和勢理論之間的相似性,討論了法拉第關於電作用傳播的概念,分析了振盪電路及由此產生的交變電流。他的文章影響了麥克斯韋,後者向他請教,希望能和他研究同一課題,並給了他極高的贊譽。

開爾文在電磁學理論和工程應用上研究成果卓著。1848年他發明了電像法,這是計算一定形狀導體電荷分布所產生的靜電場問題的有效方法。他深人研究了萊頓瓶的放電振盪特性,於1853年發表了《萊頓瓶的振盪放電》的論文,推算了振盪的頻率,為電磁振盪理論研究作出了開拓性的貢獻。他曾用數學方法對電磁場的性質作了有益的探討,試圖用數學公式把電力和磁力統一起來。1846年便成功地完成了電力、磁力和電流的「力的活動影像法」,這已經是電磁場理論的雛形了(如果再前進一步,就會深人到電磁波問題)。他曾在日記中寫道:「假使我能把物體對於電磁和電流有關的狀態重新作一番更特殊的考察,我肯定會超出我現在所知道的范圍,不過那當然是以後的事了。」他的偉大之處,在於能把自己的全部研究成果,毫無保留地介紹給了麥克斯韋,並鼓勵麥克斯韋建立電磁現象的統一理論,為麥克斯韋最後完成電磁場理論奠定了基礎。

他十分重視理論聯系實際。1875年預言了城市將採用電力照明,1879年又提出了遠距離輸電的可能性。他的這些設想以後都得以實現。1881年他對電動機進行了改造,大大提高了電動機的實用價值。在電工儀器方面,他的主要貢獻是建立電磁量的精確單位標准和設計各種精密的測量儀器。他發明了鏡式電流計(大大提高了測量靈敏度)、雙臂電橋、虹吸記錄器(可自動記錄電報信號)等等,大大促進了電測量儀器的發展。根據他的建議,1861年英國科學協會設立了一個電學標准委員會,為近代電學量的單位標准奠定了基礎。在工程技術中,1855年他研究了電纜中信號傳播情況,解決了長距離海底電纜通訊的一系列理論和技術問題。經過三次失敗,歷經兩年的多方研究與試驗,終於在1858年協助裝設了第一條大西洋海底電纜,這是開爾文相當出名的一項工作。他善於把教學、科研、工業應用結合在一起,在教學上注意培養學生的實際工作能力。在格拉斯哥大學他組建了英國第一個為學生用的課外實驗室。

湯姆孫還將物理學用到完全不同的領域。他研究過太陽熱能的起源和地球的熱平衡。他的方法可靠而有趣,但只由於他不知道太陽和地球上的能量來自核能,因而不可能得到正確的結論。他試圖用落到太陽上的隕石或用引力收縮來解釋太陽熱能的起源。約在1854年,他估算太陽的"年齡"小於5×108年,而這只是我們現在知道的值的十分之一。

從地球表面附近的溫度梯度,湯姆孫試圖推算出地球熱的歷史和年齡。他的估算仍然太低,僅為4×108年,而實際值約為5×109年。地質學家以地質現象的演變為理論根據,很快就發現他的估算是錯誤的。他們不能駁倒湯姆孫的數學,但他們肯定他的假定是錯誤的。同樣,生物學家也發現湯姆孫給出的時間進程與最新的進化論的觀念相悖。這一爭論持續了多年,湯姆孫完全不理解別人的反對意見是正確的。最後,直到放射性和核反應的發現,才證明了湯姆孫假設的前提是完全錯誤的。

流體力學特別是其中的渦旋理論成為湯姆孫最喜愛的學科之一,他受亥姆霍茲工作的啟示,發現了一些有價值的定理。他航行的收獲之一是在1876年發明了適用於鐵船的特殊羅盤,這一發明後來為英國海軍所採用,而且一直用到被現代回轉羅盤代替為止。湯姆孫的企業生產了許多磁羅盤和水深探測儀,從中大為獲利。

基於他的實踐經驗和理論知識,湯姆孫感到迫切需要統一電學單位,公制的引入使法國革命向前跨了一大步,但是電學測量卻產生了全新的問題。高斯和韋伯奠定了絕對單位制的理論基礎,"絕對"意味著它們與特定的物質或標准無關,僅取決於普適的物理定律。在絕對單位制中如何確定刻度,如何選擇合適的倍數因子使它能方便地應用於工業,如何勸說科技界共同接受這一單位制,所有這一切都是重要並且困難的任務。1861年英國科學協會任命一個委員會開始這項工作,湯姆孫是其中的一員。他們努力工作了許多年,一直到1881年,由湯姆孫和亥姆霍茲起主導作用的在巴黎召開的一次國際代表大會,和1893年,在芝加哥召開的另一次代表大會,才正式接受這一新的單位制,並採用伏特、安培、法拉和歐姆等作為電學單位,從此它們被普遍使用。然而,單位制的問題並未就此解決,後來的一些會議又改變了其中某些標准量的定義,它們的實際值也相應變動了,雖然這種變動是非常小的。

開爾文一生謙虛勤奮,意志堅強,不怕失敗,百折不撓。在對待困難問題上他講:「我們都感到,對困難必須正視,不能迴避;應當把它放在心裡,希望能夠解決它。無論如何,每個困難一定有解決的辦法,雖然我們可能一生沒有能找到。」他這種終生不懈地為科學事業奮斗的精神,永遠為後人敬仰。1896年在格拉斯哥大學慶祝他50周年教授生涯大會上,他說:「有兩個字最能代表我50年內在科學研究上的奮斗,就是『失敗』兩字。」這足以說明他的謙虛品德。為了紀念他在科學上的功績,國際計量大會把熱力學溫標(即絕對溫標)稱為開爾文(開氏)溫標,熱力學溫度以開爾文為單位,是現在國際單位制中七個基本單位之一。

開爾文的一生是非常成功的,他可以算作世界上最偉大的科學家中的一位。他於1907年12月17日去世時,得到了幾乎整個英國和全世界科學家的哀悼。他的遺體被安葬在威斯敏斯特教堂牛頓墓的旁邊。

魏格納

(2004-02-06)

魏格納(1880-1930)是德國氣象學家、地球物理學家,1880年11月1日生於柏林,1930年11月在格陵蘭考察冰原時遇難。

19世紀以前,人們尚未開始系統地研究地球整體的地質構造,對海洋與大陸是否變動,並沒有形成固定的認識。1910年德國的地球物理學家阿爾弗雷德·魏格納在偶然翻閱世界地圖時,發現一個奇特現象:大西洋的兩岸——歐洲和非洲的西海岸遙對北南美洲的東海岸,輪廓非常相似,這邊大陸的凸出部分正好能和另一邊大陸的凹進部分湊合起來;如果從地圖上把這兩塊大陸剪下來,再拼在一起,就能拼湊成一個大致上吻合的整體。把南美洲跟非洲的輪廓比較一下,更可以清楚地看出這一點:遠遠深入大西洋南部的巴西的凸出部分,正好可以嵌入非洲西海岸幾內亞灣的凹進部分。

魏格納結合他的考察經歷,認為這絕非偶然的巧合,並形成了一個大膽的假設:推斷在距今3億年前,地球上所有的大陸和島嶼都連結在一塊,構成一個龐大的原始大陸,叫做泛大陸。泛大陸被一個更加遼闊的原始大洋所包圍。後來從大約距今兩億年時,泛大陸先後在多處出現裂縫。每一裂縫的兩側,向相反的方向移動。裂縫擴大,海水侵入,就產生了新的海洋。相反地,原始大洋則逐漸縮小。分裂開的陸塊各自漂移到現在的位置,形成了今天人們熟悉的陸地分布狀態。

魏格納少年時便嚮往到北極去探險,由於父親的阻止,他沒能在高中畢業後就加入探險隊,而是進入大學學習氣象學。1905年,他以優異成績獲得氣象學博士學位後,致力於高空氣象學的研究。1906年,他和弟弟兩人駕駛高空氣球在空中連續飛行了52小時,打破了當時的世界紀錄。後來他又參加了去格陵蘭島的探險隊,島上巨大冰山的緩慢運動留給他的極其深刻的印象可能催化了後來他面對世界地圖迸發的聯想和興趣。他開始利用業余時間搜集地學資料,查找海陸漂移的證據。

1912年1月6日,魏格納在法蘭克福地質學會上做了題為「大陸與海洋的起源」的演講,提出了大陸漂移的假說。此後,由於研究冰川學和古氣候學第二次去了格陵蘭。在隨後的第一次世界大戰中,他的研究工作中斷了,在戰場上身負重傷,養病期間他於1915年出版了《海陸的起源》一書,系統地闡述了大陸漂移說。他在《大陸和海洋的形成》這部不朽的著作中努力恢復地球物理、地理學、氣象學及地質學之間的聯系——這種聯系因各學科的專門化發展被割斷——用綜合的方法來論證大陸漂移。魏格納的研究表明科學是一項精美的人類活動,並不是機械地收集客觀信息。在人們習慣用流行的理論解釋事實時,只有少數傑出的人有勇氣打破舊框架提出新理論。但由於當時科學發展水平的限制,大陸漂移由於缺乏合理的動力學機制遭到正統學者的非議。魏格納的學說成了超越時代的理念。

大陸漂移說一提出,就在地質學界引起軒然大波。年輕一代為此理論歡呼,認為開創了地質學的新時代,但老一代均不承認這一新學說。魏格納在反對聲中繼續為他的理論搜集證據,為此他又兩次去格陵蘭考察,發現格陵蘭島相對於歐洲大陸依然有漂移運動,他測出的漂移速度是每年約1米。1930年11月2日,魏格納在第4次考察格陵蘭時遭到暴風雪的襲擊,倒在茫茫雪原上,那是他50歲生日的第二天。直到次年4月,搜索隊才找到他的遺體。

1968年,法國地質學家勒比雄在前人研究的基礎上提出6大板塊的主張,它們是——歐亞板塊、非洲板塊、美洲板塊、印度板塊、南極板塊和太平洋板塊。板塊學說很好地解決了魏格納生前一直沒有解決的漂移動力問題,使地質學在一個新的高度上獲得了全面的綜合。隨著板塊運動被確立為地球地質運動的基本形式,地學也進入了一個新的發展階段。大陸分久必合、合久必分,海洋時而擴張、時而封閉,已成為人們接受的地殼構造圖景。到了20世紀80年代,人們確實相信,從大陸漂移說的提出到板塊學說的確立,構成了一次名副其實的現代地學領域的偉大的革命。

魏格納去世30年後,板塊構造學說席捲全球,人們終於承認了大陸漂移學說的正確性。由此可見:一種正確的理論在其初期階段常常被當作錯誤拋棄或是被當作與宗教對立的觀點被否定,後期階段則被當作信條來接受。但無論如何,人們至今還紀念魏格納的,不是他生前冷遇與死後熱鬧,而是他畢生尋求真理、正視事實、勇於探索和不惜獻身的科學精神。

⑥ 介紹一下開爾文

一、生平簡介
開爾文(Lord Kelvin 1824~1907),19世紀英國卓越的物理學家。原名W.湯姆孫(William Thomson),1824年6月26日生於愛爾蘭的貝爾法斯特,1907年12月17日在蘇格蘭的內瑟霍爾逝世。由於裝設大西洋海底電纜有功,英國政府於1866年封他為爵士,後又於1892年封他為男爵,稱為開爾文男爵,以後他就改名為開爾文。
1846年開爾文被選為格拉斯哥大學自然哲學教授,自然哲學在當時是物理學的別名。開爾文擔任教授53年之久,到1899年才退休。1904年他出任格拉斯哥大學校長,直到逝世。
二、科學成就
開爾文的科學活動是多方面的。他對物理學的主要貢獻在電磁學和熱力學方面。那時電磁學剛剛開始發展。逐步應用於工業而出現了電機工程,開爾文在工程應用上作出了重要的貢獻。熱力學的情況卻是先有工業,而後才有理論。從18世紀到19世紀初,在工業方面已經有了蒸汽機的廣泛應用,然而到19世紀中葉以後,熱力學才發展起來。開爾文是熱力學的主要奠基者之一。
開爾文在科學上的貢獻主要有以下個方面:
1.電磁學方面的成就
開爾文在靜電和靜磁學的理論方面,在交流電方面,特別是關於萊頓瓶的放電振盪性。靜電絕對測量和電磁測量方面,大氣電學方面等,都作出了重要的貢獻。電像法是開爾文發明的一種很有效的解決電學問題的方法。
2.在熱力學方面的成就
開爾文在1848年提出、在1854年修改的絕對熱力學溫標,是現在科學上的標准溫標。1954年國際會議確定這一標准溫標,恰好在100年之後。開爾文是熱力學第二定律的兩個主要奠基人之一。另一個人是R.克勞修斯。1851年,他關於第二定律的說法:「不可能從單一熱源取熱使之完全變為有用的功而不產生其他影響」,是公認的熱力學第二定律的標准說法。開爾文從熱力學第二定律斷言,能量耗散是普遍的趨勢。
在熱力學方面還應該提兩件事。一件事是開爾文從理論研究上預言一種新的溫差電效應,後來叫做湯姆孫效應,這是當電流在溫度不均勻的導體上通過時導體吸收熱量的效應。另一件事是開爾文和J.P.焦耳合作的多孔塞實驗,研究氣體通過多孔塞後溫度改變的現象,在理論上是為了研究實際氣體與理想氣體的差別,在實用上後來成為製造液態空氣工業的重要方法(見焦耳-湯姆孫效應)。
3.裝設大西洋海底電纜
裝設大西洋海底電纜是開爾文最出名的一項工作。當時由於電纜太長,信號減弱很嚴重。1855年開爾文研究電纜中信號傳播的情況,得出了信號傳播速度減慢與電纜長度平方成正比的規律。1851年開始有第一條海底電纜,裝設在英國與法國相隔的海峽中。1856年新成立的大西洋電報公司籌劃裝設橫過大西洋的海底電纜,並委任開爾文負責這項工作。經過兩年的努力,幾經周折,終於安裝成功。除了在工程的設計和製造上花費了很大的力量之外,開爾文的科學研究對此也起了不小的作用。
4.對電工儀表的研究
開爾文為了成功地裝設海底電纜,用了很大的力量來研究電工儀器。例如他發明的鏡式電流計可提高儀器測量的靈敏度。虹吸記錄器可自動記錄電報信號。開爾文在電工儀器上的主要貢獻是建立電磁量的精確單位標准和設計各種精密測量的儀器,包括絕對靜電計、開爾文電橋、圈轉電流計等。根據他的建議,1861年英國科學協會設立了一個電學標准委員會,為近代電學單位標准奠定了基礎。
5.創立波動和渦流
開爾文在波動和渦流方面作出了許多理論貢獻。有許多是他在自己的快艇上的觀察中受到啟發的。他進行這方面的研究,包括對彈性固體的研究,目的之一是為了航海事業的發展,另一個目的是發展他對世界萬物的機械觀。企圖通過這方面的研究把電磁現象和光現象的完整理論在牛頓經典力學的骨架上建造起來。因此他很熱心於以太理論,把假想的以太當作一種實際存在的物質加以研究,以求能充分地解釋電磁現象和光現象作為以太的某種運動形式。這種機械觀的失敗使他說出「19世紀烏雲」那樣的話。這是他在1900年一篇名為《遮蓋在熱和光的動力理論上的19世紀烏雲》的演說中講的。他說的「烏雲」有兩片,一片是以太理論的困難,一片是能量均分定理的困難。這兩個困難到20世紀都得到了解決,以太理論的困難是由狹義相對論消除的,能量均分定理的困難是量子論解決的。

⑦ 劍橋大學物理實驗室名字

英國劍橋大學物理系為了紀念卡文迪許,該系有一著名實驗室--卡文迪許實驗室,於十九世紀末期由電磁場理論奠基人麥克斯韋籌建,在幾代科學家的努力下成為英國諾貝爾獎搖籃.
與該實驗室相關的科學家名字及成就有:(1)玻爾1922研究原子結構和輻射(2)康普頓1927發現康普頓效應.
故答案為:(1)玻爾1922研究原子結構和輻射(2)康普頓1927發現康普頓效應.

⑧ 英國讀物理專業,哪些學校比較好

英國開設物理專業的名校推薦:
物理學專業分支眾多,理論物理,醫學物理、天文學、太空科學、應用物理學,凝聚態物理,量子物理等等。英國大學里廣泛採納的選修課制度意味著學生可以根據個人的興趣和志向自由組合選修課程。部分學校開設的課程還可以安排學生實習的機會,為學生將來進入社會打下良好的社會實踐基礎。
1. 帝國理工學院
MSc in Physics with Shock Physics 學制:1年
開課日期:2015年10月 學費:24000英鎊
入學要求:物理類相關背景1等榮譽學位同等學歷,雅思6.5(單項不低於6.0)。
2. 伯明翰大學
Physics and Technology of Nuclear Reactors Masters\MSc
學制:1年
開課日期:2015年9月或10月 學費:17960英鎊
入學要求:雅思6.0(單項不低於5.5)
3. 曼徹斯特大學
曼徹斯特大學物理學和天文學學院是一個英國最大的和最活躍物理學學院。學校在教學和研究方面有悠久的優良傳統,並在當代物理研究領域有廣泛涉獵。
曼徹斯特大學擁有許多多學科研究中心:光子科學研究所;非線性動力學;曼徹斯特中心道爾頓核研究所;科學和納米技術中心(這個中心負責人是諾沃肖洛夫,2012諾貝爾物理學獎獲得者)。此外,在柴郡的班克天文台也是學校的一部分。
4. 格拉斯哥大學
格拉斯哥物理學院在幾百年校史的發展中產生了非常多的著名科學家,熱力學絕對溫標的創建者、著名的蒸汽機發明家開爾文、改良了蒸汽機的詹姆斯·瓦特、物理學家、經典電動力學的創始人麥克斯韋、2013年諾貝爾物理學家得主彼得·希格斯也在2002年被格拉斯哥大學授予榮譽學位,並於2012年在格大建立希格斯玻色子實驗室,致力於該粒子的研究。

⑨ 誰知道熱力學溫度的"開爾文"相關的知識

開爾文 英文是 Kelvin 簡稱開,國際代號K,熱力學溫度的單位。開爾文是國際單位制(SI)中7個基本單位之一,以絕對零度(0K)為最低溫度,規定水的三相點的溫度為 273.16K,1K等於水三相點溫度的1/273.16。熱力學溫度T與人們慣用的攝氏溫度t的關系是T=t+273.15,因為水的冰點溫度近似等於 273.15K,並規定熱力學溫度的單位開(K)與攝氏溫度的單位攝氏度(℃)完全相同。開爾文是為了紀念英國物理學家Lord Kelvin而命名的。
熱力學溫度單位開爾文(K)是國際單位制(SI)基本單位之一。其他基本單位是米、千克、秒、安培、摩爾和坎德拉。

開爾文的定義(K):

開爾文(K)是熱力學溫度單位,等於水的三相點熱力學溫度的(1/273.16)。上述定義以物理常量:水三相點熱力學溫度Tt
r為基礎,而Tt r國際上已於1967年協議,精確地等於273.16K。(圖略)

1K=1/273.16 Tt r

開爾文是用英國科學家開爾文的名字命名的。

威廉·湯姆森(William·Thom?鄄son),後來的開爾文勛爵(Lord·Kelvin of
Largs),1824年6月26日生於英國北愛爾蘭貝爾法斯特。他的特殊天賦和理解力很早就表現出來了,以致他在10歲就被格拉斯哥大學注冊錄取。16 歲他作為大學生來到劍橋,在劍橋他所有功課成績都很優秀。湯姆森作為格拉斯哥大學物理學教授從1846年開始從事教學和科學研究。人們說,在他那兒,計劃 1小時的課經常持續3個小時。

湯姆森的興趣一向在熱力學和電學方面。熱能的研究使他認識了一個可能最低的溫度,即溫度的絕對零度。他把這個-273.15℃的溫度點當作一個新的溫度和溫標(圖略)的出發點。他與一位英國物理學家詹姆斯·普雷斯科特·焦爾(James·Prescott·Joule
1818~1889)一起發現了用他們兩人名字命名的「焦爾-湯姆森效應」。它表明,理想氣體在沒有外界做功而膨脹時,使其冷卻到足夠低的溫度。發生冷卻是由於膨脹時必須通過內部做功以克服氣體的分子力。*1856年湯姆森認識到按照他的名字命名的熱電「湯姆森效應」,它包含,當一個電流通過,在一個均勻的電導體中存在一個溫度落差按照它的方向產生熱或取走熱。

「湯姆森熱」和一個導電體的焦耳電流熱(它取決於導體的電阻和電流強度)是不能混淆的。另外湯姆森還認識到可以轉化為機械功的熱能。作為熱力學過程不可逆性的一個量,用熵的概念他與魯道夫·克勞西烏斯(Rudolf·Claustus1822~1888)同時創立了熱力學第二定律,亦即所有的熱力機只能把它從一種熱材料取走的熱能的一部分轉換成機械功。這個熱能的剩餘部分又總是被散發給冷材料。

在電學領域按照他的名字命名的開爾文電流天平屬於最重要的發明。它可以確定機械力和電流強度之間的關系。電流天平特別在測量電流和檢定電流計中得到應用。值得一提的是他還研製了靜電伏特計,它能夠相當精確的測量當時最高大約10kV的電壓。此外湯姆森改進了許多測量方法並且發明了無數其他的測量儀器,比如說精確測定很小電阻的測量電橋,它現在被稱作為湯姆森測量電橋。湯姆森通過參與實現大不列顛和美國之間首次海底電纜連接名揚國外。他是這個項目的發起人之一,並計算了電纜。經海底電纜的第一次通話是1858年8月17日通過北大西洋從大不列顛通往美國。無可置疑,這項海底電纜的連接是19世紀最大的技術貢獻。遺憾的是,因為出現了故障,用這個電纜向大西洋另一方大約只通了700次話。跨越大西洋持續的通信直到1866年初才在兩洲之間建起,這項工作湯姆森同樣參與並起了決定性的作用。

威廉·湯姆森1882年被授予貴族稱號後被尊稱為拉格斯的開爾文勛爵。1907年12月17日死於蘇格蘭拉格斯附近的內斯霍爾(Netherhall),享年84歲。他的成就得到了承認,他是19世紀傑出的和受人尊敬的自然科學家。他把最後的長眠之處選在伊薩克·牛頓爵士(1643-1727)旁邊的威斯敏斯特爾教堂。

*焦爾-湯姆森效應:氣體經歷焦爾-湯姆森膨脹時溫度隨壓強的變化。
絕對零度是指-273.15度,在這個溫度下的物體不包含熱量,氣體的體積將減小到零。在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動.還包括某些形式的電子運動,然而它並不包括量子力學概念中的「零點運動」。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的,但已達到絕對零度以上百萬分之一度內的低溫。若用分子運動論來解釋,理想氣體分子的平均平動動能由溫度T確定,則可將絕對零度與「理想氣體分子停止運動時的溫度」等同看待。事實上一切實際氣體在溫度接近-273.15℃時,早已變成液態或固態,它的溫度趨於一個極限值,這個極限值就稱為絕對零度。絕對零度是溫度的最低點,實際上永遠也不會達到的。
初學查理定律時,我們知道,一定質量的氣體,在體積一定時,壓強與攝氏溫度不成正比。那麼,怎樣才能使一定質量的氣體在體積一定時,它的壓強與溫度成正比呢?
很自然地,我們用「外推法」,將等容線反向延長與橫坐標(t軸)交於一點(如圖),令P=0時,Pt=P0(1+1/273°C)=0由得出t= -273°C。經過精確的實驗證明,上述的t=-273°C應為-273.15°C。早在19世紀末,英國科學家威廉·湯姆(開爾文)首先創立了以t=- 273.15°C為零度的溫標,稱之為熱力學溫標(即絕對溫標),t=-273.15°C定義為OK,即絕對零度。
絕對零度到達:人們是從液化氣開始,十步步地逼近它的。早在19世紀末,許多科學家利用加壓法對氨氣進行液化,得出了-110°C(163K 的溫度。利用這種方法以及後來的級聯法(即採用臨界溫度下氣體逐漸蒸發冷卻而獲得較低溫度),在-140°C(133K)液化了氧氣,-183°C (90k)液化了氮,在-195°C(78K)液化了一氧化碳。1898年,英國人杜瓦用多孔塞膨脹法在-240°C(33k)的低溫下液化了氫氣,隨著固化氫的成功,得出了18世紀的最低溫度-259°C(14k)。
進入20世紀後,隨著科技的發展和儀器的更新,我們離絕對零度越來越近:1908年,荷蘭物理學家昂尼斯成功地實現了4.2k的低溫把自然界中最輕的隋性氣體氦液化了。隨後,昂尼斯又叩開1k的大門,獲得0.7k的低溫。
在通往絕對零度的道路上,科學家發現了許多經典物理學無法解釋的現象,如超導電性,超流動性等。為使這些有用的技術造福人類,科學家繼續前進。 1926年,德拜與吉奧克用磁冷卻法達到了10-3k,後來又攻破了10-6k,離絕對零度僅有一步之遙了,但人們感到,越是逼近它,達到它的希望越是遙遠,這正如一條雙曲線,它只能是無限地接近坐標軸,而絕對零度這個宇宙低溫的極限,只能是可望不可及的。絕對零度絕對零度表示那樣一種溫度,在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動.還包括某些形式的電子運動,然而它並不包括量子力學概念中的「零點運動」。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的,但已達到絕對零度以上百萬分之一度內的低溫。所有這些在物質內部發生的分子和原子運動統稱為「熱運動」,這些運動是肉眼看不見的,但是我們會看到,它們決定了物質的大部分與溫度有關的性質。正如一條直線僅由兩點連成的一樣,一種溫標是由兩個固定的且可重復的溫度來定義的。最初,在一標准大氣壓(760毫米水銀柱,或760托)時,攝氏溫標是定冰之熔點為0℃和水之沸點為100℃,絕對溫標是定絕對零度為oK和冰之熔點為273K,這樣,就等於有三個固定點而導致溫度的不一致,因為科學家希望這兩種溫標的度數大小朝等,所以,每當進行關於這三點的相互關系的准確實驗時,總是將其中一點的數值改變達百分之一度。現在,除了絕對零度外,僅有一固定點獲得國際承認,那就是水的「三相點」。1948年確定為273.16K,即絕對零度以上273.16度。當蒸氣壓等於一大氣壓時,水的正常冰點略低,為273.15K(=o℃=320°F),水的正常沸點為373.15K(=100℃=212°F)。這些以攝氏溫標表示的固定點和其他一些次要的測溫參考點(即所謂的國際實用溫標)的實際值,以及在實驗室中為准確地獲得這些值的度量方法,均由國際權度委員會定期公布。

1848年,英國科學家威廉·汽姆遜·開爾文勛爵(1824~1907)建立了一種新的溫度標度,稱為絕對溫標,它的量度單位稱為開爾文(K)。這種標度的分度距離同攝氏溫標的分度距離相同。它的零度即可能的最低溫度,相當於攝氏零下273度(精確數為-273.15℃),稱為絕對零度。因此,要算出絕對溫度只需在攝氏溫度上再加273即可。那時,人們認為溫度永遠不會接近於0K,但今天,科學家卻已經非常接近這一極限了。

物體的溫度實際上就是原子在物體內部的運動。當我們感到一個物體比較熱的時候,就意味著它的原子在快速動動:當我們感到一個物體比較冷的時候,則意味著其內部的原子運動速度較慢。我們的身體是通過熱或冷來感覺這種運動的,而物理學家則是絕對溫標或稱開爾文溫標來測量溫度的。

按照這種溫標測量溫度,絕對溫度零度(0K)相當於攝氏零下273.15度(-273.15℃)被稱為「絕對零度」,是自然界中可能的最低溫度。在絕對零度下,原子的運動完全停止了,並且從理論上講,氣體的體積應當是零。由此,人們就會明白為什麼溫度不可能降到這個標度之下,為什麼事實上甚至也不可能達到這個標度,而只能接近它。

自然界最冷的地方不是冬季的南極,而是在星際空間的深處,那裡的溫度是絕對溫度3度(3K),即只比絕對零度高3度。

這個「熱度」因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。

在實驗室中人們可以做得更好,能進一步地接近於絕對零度,從上個世紀開始,人們就已經製成了能達到3K的製冷系統,並且在10多年前,在實驗室里達到的最低溫度已是絕對零度之上1/4度了,後來在1995年,科羅拉多大學和美國國家標准研究所的兩位物理學家愛里克·科內爾和卡爾威曼成功地使一些銣原子達到了令人難以置信的溫度,即達到了絕對零度之上的十億分之二十度(2×10-8K)。他們利用激光束和「磁陷阱」系統使原子的運動變慢,我們由此可以看到,熱度實際上就是物質的原子運動。非常低的溫度是可以達不到的,而且還要以尋求「阻止」每一單個原子運動,就像打檯球一樣,要使一個球停住就要用另一個球去打它。這了弄明白這個道理,只要想一想下面這個事實就夠了。在常溫下,氣體的原子以每小時1600公里的速度運動著,而在3K的溫度下則是以每小時1米的速度運動著,而在20nK(2×10-8K)的情況下,原子運動的速度就慢得難以測量了。在20nK下還可以發現物質呈現的新狀態,這在70年前就被愛因斯坦和印度物理學家玻色(1894~1974)預見了。

事實上,在這樣的非常溫度下,物質呈現的既液體狀態,也不是固體狀態,更不是氣體狀態,而是聚集成唯一的「超原子」,它表現為一個單一的實體。計量上的零點有時是可以任意選取的,例如,經度零度是任意確
定的。溫度的零點也是一樣。在攝氏溫標中,將冰的熔點取作零碎度;
而在華氏溫標中,零碎度則處於冰的熔點以下。這兩種溫標中,溫度
都可以低於零度。將近18世紀末的時候,人們開始覺得熱是無盡頭的,
但冷似乎是有極限的。既然冷有盡頭,那麼,這個盡頭就是一種不可
超越的「零度」,於是,開爾文引進了開氏溫標。開氏溫標中的零度
是不可超越的,因而叫做「絕對零度」。這是「絕對」二字的一種物
理涵義。
1787年,法國物理學家查理發現,理想氣體每冷卻1攝氏度,其
體積就縮小它處於0℃時體積的1/273,這就是著名的查理定律。如
果理想氣體被冷卻的過程一直繼續下去,那麼它的溫度降到-273℃時,
氣體的體積豈非縮小到「零」了?在物理上,體積為零意味著氣體完
全消失了,這當然是不會發生的。這是「絕對」的第二種涵義。實際
情況是,當氣體冷卻到一定溫度後它總是先變為液體,然後又在更低
的溫度下變為固體。
英國物理學家開爾文把溫度作為物質分子運動速度的一種表述方
式,物質越冷其分子運動就越慢,分子運動中最最慢的就是完全不運
的分子,因此也不會有比它更低的溫度。於是-273℃這個溫度便是
一種真正的零度。這就是絕對零度「絕對」的第三層涵義。

絕對零度絕對零度表示那樣一種溫度,在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動.還包括某些形式的電子運動,然而它並不包括量子力學概念中的「零點運動」。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的,但已達到絕對零度以上百萬分之一度內的低溫。所有這些在物質內部發生的分子和原子運動統稱為「熱運動」,這些運動是肉眼看不見的,但是我們會看到,它們決定了物質的大部分與溫度有關的性質。正如一條直線僅由兩點連成的一樣,一種溫標是由兩個固定的且可重復的溫度來定義的。最初,在一標准大氣壓(760毫米水銀柱,或760托)時,攝氏溫標是定冰之熔點為0℃和水之沸點為100℃,絕對溫標是定絕對零度為oK和冰之熔點為273K,這樣,就等於有三個固定點而導致溫度的不一致,因為科學家希望這兩種溫標的度數大小朝等,所以,每當進行關於這三點的相互關系的准確實驗時,總是將其中一點的數值改變達百分之一度。現在,除了絕對零度外,僅有一固定點獲得國際承認,那就是水的「三相點」。1948年確定為273.16K,即絕對零度以上273.16度。當蒸氣壓等於一大氣壓時,水的正常冰點略低,為273.15K(=o℃=320°F),水的正常沸點為373.15K(=100℃=212°F)。這些以攝氏溫標表示的固定點和其他一些次要的測溫參考點(即所謂的國際實用溫標)的實際值,以及在實驗室中為准確地獲得這些值的度量方法,均由國際權度委員會定期公布。
絕對零度就是-273.16攝氏度。
這是現今技術所能測得的最低溫度,但是在地球上還製造不出來,只有在冥王星由於距離太陽太遠,才擁有這種溫度。
在這種溫度下,只存在固體。生命和思想都不能運行。
這是八年級物理第一冊中的第三章的問題

絕對零度絕對零度表示那樣一種溫度,在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動.還包括某些形式的電子運動,然而它並不包括量子力學概念中的「零點運動」。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的,但已達到絕對零度以上百萬分之一度內的低溫。所有這些在物質內部發生的分子和原子運動統稱為「熱運動」,這些運動是肉眼看不見的,但是我們會看到,它們決定了物質的大部分與溫度有關的性質。正如一條直線僅由兩點連成的一樣,一種溫標是由兩個固定的且可重復的溫度來定義的。最初,在一標准大氣壓(760毫米水銀柱,或760托)時,攝氏溫標是定冰之熔點為0℃和水之沸點為100℃,絕對溫標是定絕對零度為oK和冰之熔點為273K,這樣,就等於有三個固定點而導致溫度的不一致,因為科學家希望這兩種溫標的度數大小朝等,所以,每當進行關於這三點的相互關系的准確實驗時,總是將其中一點的數值改變達百分之一度。現在,除了絕對零度外,僅有一固定點獲得國際承認,那就是水的「三相點」。1948年確定為273.16K,即絕對零度以上273.16度。當蒸氣壓等於一大氣壓時,水的正常冰點略低,為273.15K(=o℃=320°F),水的正常沸點為373.15K(=100℃=212°F)。這些以攝氏溫標表示的固定點和其他一些次要的測溫參考點(即所謂的國際實用溫標)的實際值,以及在實驗室中為准確地獲得這些值的度量方法,均由國際權度委員會定期公布。

1848年,英國科學家威廉·汽姆遜·開爾文勛爵(1824~1907)建立了一種新的溫度標度,稱為絕對溫標,它的量度單位稱為開爾文(K)。這種標度的分度距離同攝氏溫標的分度距離相同。它的零度即可能的最低溫度,相當於攝氏零下273度(精確數為-273.15℃),稱為絕對零度。因此,要算出絕對溫度只需在攝氏溫度上再加273即可。那時,人們認為溫度永遠不會接近於0K,但今天,科學家卻已經非常接近這一極限了。

物體的溫度實際上就是原子在物體內部的運動。當我們感到一個物體比較熱的時候,就意味著它的原子在快速動動:當我們感到一個物體比較冷的時候,則意味著其內部的原子運動速度較慢。我們的身體是通過熱或冷來感覺這種運動的,而物理學家則是絕對溫標或稱開爾文溫標來測量溫度的。

按照這種溫標測量溫度,絕對溫度零度(0K)相當於攝氏零下273.15度(-273.15℃)被稱為「絕對零度」,是自然界中可能的最低溫度。在絕對零度下,原子的運動完全停止了,並且從理論上講,氣體的體積應當是零。由此,人們就會明白為什麼溫度不可能降到這個標度之下,為什麼事實上甚至也不可能達到這個標度,而只能接近它。

自然界最冷的地方不是冬季的南極,而是在星際空間的深處,那裡的溫度是絕對溫度3度(3K),即只比絕對零度高3度。

這個「熱度」因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。

在實驗室中人們可以做得更好,能進一步地接近於絕對零度,從上個世紀開始,人們就已經製成了能達到3K的製冷系統,並且在10多年前,在實驗室里達到的最低溫度已是絕對零度之上1/4度了,後來在1995年,科羅拉多大學和美國國家標准研究所的兩位物理學家愛里克·科內爾和卡爾威曼成功地使一些銣原子達到了令人難以置信的溫度,即達到了絕對零度之上的十億分之二十度(2×10-8K)。他們利用激光束和「磁陷阱」系統使原子的運動變慢,我們由此可以看到,熱度實際上就是物質的原子運動。非常低的溫度是可以達不到的,而且還要以尋求「阻止」每一單個原子運動,就像打檯球一樣,要使一個球停住就要用另一個球去打它。這了弄明白這個道理,只要想一想下面這個事實就夠了。在常溫下,氣體的原子以每小時1600公里的速度運動著,而在3K的溫度下則是以每小時1米的速度運動著,而在20nK(2×10-8K)的情況下,原子運動的速度就慢得難以測量了。在20nK下還可以發現物質呈現的新狀態,這在70年前就被愛因斯坦和印度物理學家玻色(1894~1974)預見了。

事實上,在這樣的非常溫度下,物質呈現的既液體狀態,也不是固體狀態,更不是氣體狀態,而是聚集成唯一的「超原子」,它表現為一個單一的實體。

絕對零度絕對零度表示那樣一種溫度,在此溫度下,構成物質的所有分子和原子均停止運動。所謂運動,系指所有空間、機械、分子以及振動等運動.還包括某些形式的電子運動,然而它並不包括量子力學概念中的「零點運動」。除非瓦解運動粒子的集聚系統,否則就不能停止這種運動。從這一定義的性質來看,絕對零度是不可能在任何實驗中達到的,但已達到絕對零度以上百萬分之一度內的低溫。所有這些在物質內部發生的分子和原子運動統稱為「熱運動」,這些運動是肉眼看不見的,但是我們會看到,它們決定了物質的大部分與溫度有關的性質。正如一條直線僅由兩點連成的一樣,一種溫標是由兩個固定的且可重復的溫度來定義的。最初,在一標准大氣壓(760毫米水銀柱,或760托)時,攝氏溫標是定冰之熔點為0℃和水之沸點為100℃,絕對溫標是定絕對零度為oK和冰之熔點為273K,這樣,就等於有三個固定點而導致溫度的不一致,因為科學家希望這兩種溫標的度數大小朝等,所以,每當進行關於這三點的相互關系的准確實驗時,總是將其中一點的數值改變達百分之一度。現在,除了絕對零度外,僅有一固定點獲得國際承認,那就是水的「三相點」。1948年確定為273.16K,即絕對零度以上273.16度。當蒸氣壓等於一大氣壓時,水的正常冰點略低,為273.15K(=o℃=320°F),水的正常沸點為373.15K(=100℃=212°F)。這些以攝氏溫標表示的固定點和其他一些次要的測溫參考點(即所謂的國際實用溫標)的實際值,以及在實驗室中為准確地獲得這些值的度量方法,均由國際權度委員會定期公布。

1848年,英國科學家威廉·汽姆遜·開爾文勛爵(1824~1907)建立了一種新的溫度標度,稱為絕對溫標,它的量度單位稱為開爾文(K)。這種標度的分度距離同攝氏溫標的分度距離相同。它的零度即可能的最低溫度,相當於攝氏零下273度(精確數為-273.15℃),稱為絕對零度。因此,要算出絕對溫度只需在攝氏溫度上再加273即可。那時,人們認為溫度永遠不會接近於0K,但今天,科學家卻已經非常接近這一極限了。

物體的溫度實際上就是原子在物體內部的運動。當我們感到一個物體比較熱的時候,就意味著它的原子在快速動動:當我們感到一個物體比較冷的時候,則意味著其內部的原子運動速度較慢。我們的身體是通過熱或冷來感覺這種運動的,而物理學家則是絕對溫標或稱開爾文溫標來測量溫度的。

按照這種溫標測量溫度,絕對溫度零度(0K)相當於攝氏零下273.15度(-273.15℃)被稱為「絕對零度」,是自然界中可能的最低溫度。在絕對零度下,原子的運動完全停止了,並且從理論上講,氣體的體積應當是零。由此,人們就會明白為什麼溫度不可能降到這個標度之下,為什麼事實上甚至也不可能達到這個標度,而只能接近它。

自然界最冷的地方不是冬季的南極,而是在星際空間的深處,那裡的溫度是絕對溫度3度(3K),即只比絕對零度高3度。

這個「熱度」因為實際上我們談到的溫度總是在絕對零度之上)是作為宇宙起源的大爆炸留存至今的熱度,事實上,這是證明大爆炸理論最顯著有效的證據之一。

在實驗室中人們可以做得更好,能進一步地接近於絕對零度,從上個世紀開始,人們就已經製成了能達到3K的製冷系統,並且在10多年前,在實驗室里達到的最低溫度已是絕對零度之上1/4度了,後來在1995年,科羅拉多大學和美國國家標准研究所的兩位物理學家愛里克·科內爾和卡爾威曼成功地使一些銣原子達到了令人難以置信的溫度,即達到了絕對零度之上的十億分之二十度(2×10-8K)。他們利用激光束和「磁陷阱」系統使原子的運動變慢,我們由此可以看到,熱度實際上就是物質的原子運動。非常低的溫度是可以達不到的,而且還要以尋求「阻止」每一單個原子運動,就像打檯球一樣,要使一個球停住就要用另一個球去打它。這了弄明白這個道理,只要想一想下面這個事實就夠了。在常溫下,氣體的原子以每小時1600公里的速度運動著,而在3K的溫度下則是以每小時1米的速度運動著,而在20nK(2×10-8K)的情況下,原子運動的速度就慢得難以測量了。在20nK下還可以發現物質呈現的新狀態,這在70年前就被愛因斯坦和印度物理學家玻色(1894~1974)預見了。

事實上,在這樣的非常溫度下,物質呈現的既不是液體狀態,也不是固體狀態,更不是氣體狀態,而是聚集成唯一的「超原子」,它表現為一個單一的實體。:

⑩ 劍橋大學在英國哪個城市

劍橋大學校址在:英國 英格蘭 劍橋郡

劍橋是位於英格蘭東部的一個城市,距倫敦以北50公里。劍橋的公路和鐵路都十分健全,到倫敦主要機場也很近。

市中心到處都是騎自行車的學生,距劍河不遠就是英格蘭的鄉村,別具另外一番風味。

劍橋雖然不大,但充滿活力,為到此工作的學習的人們提供廣泛的設施和服務。

(10)英國大學里哪裡有開爾文實驗室擴展閱讀:

劍橋大學以其卓越的自然科學成就聞名於世,與近鄰牛津大學一樣,是世界上最好的大學城之一。

劍橋的名稱取自當地的一條環城河流——劍河。

劍河是一條南北走向、曲折前行的小河,劍河兩岸風景秀麗,芳草青青,河上架設著許多設計精巧,造型美觀的橋梁,其中以數學橋、格蕾橋和嘆息橋最為著名,劍橋之名由此而來。

閱讀全文

與英國大學里哪裡有開爾文實驗室相關的資料

熱點內容
印尼萬人住在哪裡 瀏覽:804
越南鼓是哪裡出的 瀏覽:509
越南護照尺寸多少合適 瀏覽:167
義大利國際生是什麼意思 瀏覽:22
印度人盤子里吃的什麼東西 瀏覽:874
中國最大城中湖是什麼 瀏覽:354
印尼虎頭苗有什麼好 瀏覽:616
英國衛褲怎麼穿正確 瀏覽:714
哪個日本動漫在中國受歡迎 瀏覽:246
奧運會印度首金是什麼項目 瀏覽:74
泰國聽中國哪個明星歌多 瀏覽:767
去伊朗做什麼最賺錢 瀏覽:105
義大利衛浴奢侈品牌有哪些 瀏覽:81
英國海盜有多少人 瀏覽:597
世界盃中國贏了越南後如何 瀏覽:504
德國和伊朗關系為什麼這么好 瀏覽:616
怎麼給印尼的人打錢 瀏覽:249
伊朗為什麼打擊美軍 瀏覽:221
中國人去印尼怎麼辦簽證 瀏覽:584
在印度用什麼表示尊敬 瀏覽:440