導航:首頁 > 印度資訊 > 印度人如何除法

印度人如何除法

發布時間:2022-05-09 23:56:32

① 古印度的數學家有哪些

UN近代史——第一百九十篇——古印度數學家的「寓數於音

文化問題:需要「原湯化原食」

德國哲學家海德格爾說:文化上的問題只有用產生這個文化的土壤中產生出來的辦法才能夠解決。大概是因為這么做太艱辛了吧,我們寧願通過文化貿易的方式來解救燃眉之急……

海德格爾大概不知道中國人「原湯化原食」的說法,不然也許會引用一下。高見啊高見!我們的社會中至今仍有一批全盤西化派(盡管他們沒有公開打出這個旗號),他們最應該好好地聽聽西方的哲學家海德格爾是怎麼說的。

數學怪人的解釋

數學界有一些怪人,中國的陳景潤、美國的納什、匈牙利血統的美國數學家埃爾德什等均屬此列。為什麼會這樣呢?

俄羅斯著名數學家科爾莫哥洛夫認為,恰恰就在數學才能開始顯現的時候,一個人自身的正常心理發展就停止了。

當然,並非所有數學家都異於常人,但是,對於那些數學怪才,科爾莫哥洛夫的解釋也許可以聊備一說。

語音與數字

古代印度天文學家、數學家Aryabhata在公元499年即他23歲的時候,寫了一首韻文,其實是一張正弦表,文中的每個字母都表示特定的數。

印度人有「寓數於音(節)」的傳統。比如,用梵文中的25個分類(?原文為classified)輔音,即從k到m,來表示1到25;用8個未分類輔音,即從y到h,來表示10的30次方到10的100次方; 用9個母音,即a到au,來表示100的零次方到100的8次方。於是,khyughr=(4X1003 )+(2+30)1002=4,320,000。

為什麼印度文化不害怕大數?是因為印度人見慣了上萬米的高山嗎?是因為寬幾千米的大河奔瀉千里的景象不足為奇嗎?為什麼印度人有熱情去努力構造最短的片語來表示那些巨大而友善的數字呢?在古代印度,人們會這樣議論一位語法學家:若某一語法規則的表述能省掉半個音節,他會像得了兒子那麼高興。對於古印度人,聲音是神聖的,一個音節可以容納無窮大:最小化的語詞與龐大的數字是並行不悖的。

(Roddam Narasimha, Sines in terse verse, Nature, 2001, 414 (6866): 851)

我曾寫過短文「科學與音樂」(http://www.sciencenet.cn/blog/user_content.aspx?id=5172)、「隨音符跳動的科學人生」 (http://www.sciencenet.cn/blog/user_content.aspx?id=37739),簡單討論科學與音樂的關系。古印度人對數字與語音的關系的看法,為探討科學與音樂的關系提供了又一個視角。

我對Aryabhata了解不多,下面是香港一個網站對他的簡介。(http://www.edp.ust.hk/previous/math/history/3/3_97.htm)

阿耶波多第一[Aryabhata I]公元476—550,印度

他是迄今所知最早的印度數學家,是屬於拘蘇摩補羅學派。他主要有兩本著作:一本是《阿耶波多歷書》,成書於公元499年,包括「天文表集」、「算術」、「時間的度量」、「球」等部份。該書共4編,由121行詩構成,其中論及數學的有兩篇,並33行詩,內容包括算術、代數、幾何、三角等知識,而另一本天算書已經失傳。

他對數學作出了多方面的貢獻,其中正弦表和一次不定方程的解法是他最有代表性的成果。

他指出π = (104 × 8 + 62000) ÷ 20000 = 3.1416;而在製作正弦表方面,先把圓周分為360等份,而每份繼續分為60小等份,其特點更是計算半弦相當於現在的正弦線而不是全弦的長,這與餚臘人是不同的。

他建立了求一次線性不定方程by - ax = c[a,b,c都是整數]的正整數通解的法則,這項工作在當時是走在世界的前列,而其法實際上是輾轉相除法。

阿耶波多在印度科學史上是有重要影響的人物,為了紀念他,1975年4月19日印度發射的第一顆人造衛星便是命名為阿耶波多號。

② 古代的人如何運算數學的加減乘除

算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,也同樣經歷了一個漫長的歷史發展過程。

在算籌計數法中,以縱橫兩種排列方式來表示單位數目的,其中1-5均分別以縱橫方式排列相應數目的算籌來表示,6-9則以上面的算籌再加下面相應的算籌來表示。表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空。這種計數法遵循十進位制。

算籌的出現年代已經不可考,但據史料推測,算籌最晚出現在春秋晚期戰國初年(公元前722年~公元前221年),一直到算盤發明推廣之前都是中國最重要的計算工具。

算籌的發明就是在以上這些記數方法的歷史發展中逐漸產生的。它最早出現在何時,現在已經不可查考了,但至遲到春秋戰國;算籌的使用已經非常普遍了。前面說過,算籌是一根根同樣長短和粗細的小棍子,那麼怎樣用這些小棍子來表示各種各樣的數目呢?

那麼為什麼又要有縱式和橫式兩種不同的擺法呢?這就是因為十進位制的需要了。所謂十進位制,又稱十進位值制,包含有兩方面的含義。其一是"十進制",即每滿十數進一個單位,十個一進為十,十個十進為百,十個百進為千……其二是"位值制,即每個數碼所表示的數值,不僅取決於這個數碼本身,而且取決於它在記數中所處的位置。如同樣是一個數碼"2",放在個位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我國商代的文字記數系統中,就已經有了十進位值制的蔭芽,到了算籌記數和運算時,就更是標準的十進位值制了。

按照中國古代的籌算規則,算籌記數的表示方法為:個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式……這樣從右到左,縱橫相間,以此類推,就可以用算籌表示出任意大的自然數了。由於它位與位之間的縱橫變換,且每一位都有固定的擺法,所以既不會混淆,也不會錯位。毫無疑問,這樣一種算籌記數法和現代通行的十進位制記數法是完全一致的。

中國古代十進位制的算籌記數法在世界數學史上是一個偉大的創造。把它與世界其他古老民族的記數法作一比較,其優越性是顯而易見的。古羅馬的數字系統沒有位值制,只有七個基本符號,如要記稍大一點的數目就相當繁難。古美洲瑪雅人雖然懂得位值制,但用的是20進位;古巴比倫人也知道位值制,但用的是60進位。20進位至少需要19個數碼,60進位則需要59個數碼,這就使記數和運算變得十分繁復,遠不如只用9個數碼便可表示任意自然數的十進位制來得簡捷方便。中國古代數學之所以在計算方面取得許多卓越的成就,在一定程度上應該歸功於這一符合十進位制的算籌記數法。馬克思在他的《數學手稿》一書中稱十進位記數法為"最妙的發明之一",確實是一點也不過分的。

二進制思想的開創國

著名的哲學家數學家萊布尼茨(1646-1716)發明了對現代計算機系統有著重要意義的二進制,不過他認為在此之前,中國的《易經》中已經提到了有關二進制的初步思想。當代的許多科學家認為易經中並不含有復雜的二進制思想,可是這本中國古籍中的一些基本思想和二進制在很大程度上仍然有著千絲萬縷的聯系。

元始的《靈寶經》裡面把陰陽定義為陽是自冬至到夏至的上升的氣,陰為從夏至到冬至下降的氣,這是對地球周期運動的最簡練認識。陰陽是一種物質認識,後來轉化為思想方式,反者道之動等等,都是這種思想的表現。從而開創了對立統一的思想方式,實際上計算機的電子脈沖的思想是與之一致的,采樣定律也是與之一致的。

《易經》是我國伏羲、周文王等當政者積累觀天測算經驗而成的關於天象氣象和人變易的經典,從八卦到六十四卦,就是二進制三位到六位表達,上世紀八十年代還有四位計算機,可以說,周文王的六十四卦在表達能力上已經高於四位計算機。

十進制的使用

《卜辭》中記載說,商代的人們已經學會用一、二、三、四、五、六、七、八、九、十、百、千、萬這13個單字記十萬以內的任何數字,但是現在能夠證實的當時最大的數字是三萬。甲骨卜辭中還有奇數、偶數和倍數的概念。

十進位位值制記數法包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行,以至於人們往往忽略它對數學發展所起的關鍵作用。

我們有個成語叫"屈指可數",說明古代人數數確實是離不開手指的,而一般人的手指恰好有十個。因此十進制的使用似乎應該是極其自然的事。但實際情況並不盡然。在文明古國巴比倫使用的是60進位制(這一進位制到現在仍留有痕跡,如一分=60秒等)另外還有採用二十進位制的。古代埃及倒是很早就用10進位制,但他們卻不知道位值制。所謂位值制就是一個數碼表示什麼數,要看它所在的位置而定。位值制是千百年來人類智慧的結晶。零是位值制記數法的精要所在。但它的出現卻並非易事。我國是最早使用十進制記數法,且認識到進位制的國家。我們的口語或文字表達的數字也遵守這一原則,比如一百二十七。同時我們對0的認識最早。

十進制是中國人民的一項傑出創造,在世界數學史上有重要意義。著名的英國科學史學家李約瑟教授曾對中國商代記數法予以很高的評價,"如果沒有這種十進制,就幾乎不可能出現我們現在這個統一化的世界了",李約瑟說"總的說來,商代的數字系統比同一時代的古巴比倫和古埃及更為先進更為科學。"

分數和小數的最早運用

分數的應用

最初分數的出現,並非由除法而來。分數被看作一個整體的一部分。"分"在漢語中有"分開""分割"之意。後來運算過程中也出現了分數,它表示兩整數比。分數的加減乘除運算我們小學就已完全掌握了。很簡單,是不是?不過在七、八百年以前的歐洲,如果你有這種水平那麼就可以說相當了不起了。那時精通自然數的四則運算就已達到了學者水平。至於分數,對當時人來說簡直難於上青天。德國有句諺語形容一個人陷入絕境,就說:"掉到分數里去了"。為什麼會如此呢?這都是笨拙的記數法導致的。在我國古代,《九章算術》中就有了系統的分數運算方法,這比歐洲大約早1400年。

西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。

從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、除分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。

分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。

小數的最早使用

劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成

把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。

九九表的使用

作為啟蒙教材,我們都背過九九乘法表:一一得一、一二得二……九九八十一。而古代是從"九九八十一"開始,因此稱"九九表"。九九表的使用,對於完成乘法是大有幫助的。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。

根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。

除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。

乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。

負數的使用

人們在解方程或其它數的運算過程中,往往要碰到從較小數減去較大數的情形,另外,還遇到了增加與減小,盈餘與虧損等互為相反意義的量,這樣,人們自然地引進了負數。

負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。

在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。

在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。

從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。

圓周率的計算

圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。

我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。

③ 沒有中國的九九乘法口訣,外國人是怎麼算乘除法的

在印度,他們的乘法口決比我們的還先進。

④ 外國人為什麼說十進制是印度發明的

沒有這個說法(除了印度人喜歡在網上鼓吹),只有零符號是印度人最先創造出來的說法。具體是不是最先,其實都還有爭議。

零符號的出現是需要十進位置制的,因為十進位置制的需要零符號才被創造出來的,中國是最早使用十進位置制的國家。同時也是最早闡述位置制意義的國家。

十進位 位值制記數法 包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行。但是在表示十的時候,個位需要一個符號零來佔位;這樣才能讓1的符號表示10,不然極易讓數字混淆。以至於人們往往忽略它對數學發展所起的關鍵作用。

3000年前,中國周代(前1046年—前256年)金文的紀數法,繼承商代的十進制,又有明顯的進步,十進數量級符號有十、百、千、萬、億,如西周金文「伐鬼方……俘萬三千八十一人」,「武王遂征四方,俘人三億萬有二百三十」,出現了位值記數,例如「俘牛三百五十五「,其中三百五十五寫成「三全XX」,前面的「全」是金文的「百」,後面兩個XX是五十五,省去了「十」,出現了位置概念,但尚未形成完整的位值制。金文商鞅量銘還出現分數。


2700年前,公元前700年前的中國籌算數碼已經十分成熟了;籌算數碼就是十進位值制,和現在的世界通用的十進位置制幾乎一樣。因為算籌是天然的十進位值制,只是早期在算籌上的空格只是代表零,而沒有符號零來對應表示。後來才用囗來表示零的符號,此後不知道是因為算籌空位使用銅錢代替的緣故,還是因為〇比囗寫起來方便,反正〇代替了囗作為了中國零的正式符號。不過總感覺古印度的兩種數字受我們算籌的影響,前面三個更是一模一樣。春秋戰國時代(公元前770年-公元前221年),出現嚴格的十進位制籌算記數,以空代表0,也發明了用於十進位制乘法、除法的九九表.

籌算數碼有橫式和縱式兩種:

籌算數碼的特點是只用18個符號,通過位值制就可表示出任何數。按照中國古代的籌算規則,算籌記數的表示方法為:遇零留空位,個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式,以此類推。這樣從右到左,縱橫相間;就可以用算籌表示出任意大的自然數了。由於位與位之間的縱橫變換,每一位都有固定的擺法;所以既不會混淆,也不會錯位;比如123=〡二〣。毫無疑問,算籌記數法和現代通行的十進位制記數法是完全一致的。

按照現在的計數法順序的話:10=〡+空格=〡 。103=〡+空格+〣=〡 〣。

在用囗為零符號的時代零=囗,則10=〡囗。103=〡囗〣。

採用金元時代採用的零=〇,則10=〡〇。103=〡〇〣。


2400年前,公元前400年前;墨子(約公元前476年,一說是公元前480年)是對位值制概念進行總結和闡述的第一個科學家。他明確指出,在不同位數上的數碼,其數值不同。例如,在相同的數位上,一小於五,而在不同的數位上,一可多於五。這是因為在同一數位上(個位、十位、百位、千位……),五包含了一,而當一處於較高的數位上時,則反過來一包含了五.十進位值制的發明,是中國對於世界文明的一個重大貢獻。正如李約瑟在《中國科學技術史》數學卷中所說:「商代的數字系統是比古巴比倫和古埃及同一時代的字體更為先進、更為科學的」,「如果沒有這種十進位制,就幾乎不可能出現我們現在這個統一化的世界了」。


而印度到公元七世紀時方採用十進位值制,明顯是受到中國的影響。

公元876年,人們在印度的瓜廖爾(Gwalior)這個地方;發現了一塊刻有「27o」這個數字的石碑。這也是人們發現的有關「0」符號的最早記載,但是這個零的符號是個比〇小一圈的圓圈o;也不是現代「0」這個符號的樣子。


但是如果說符號的話,中國算籌里早已經有空格;後來更是用銅錢在算籌里表示零的符號。此後銅錢演變為〇,作為零的符號;是很正常的事情。在690年時;武則天頒布了則天文字,其中一個字就是「〇」了(比印度的0的小圓圈符號o早出現186年);雖然當時還不是零的意思。而中國古代數學上記錄「〇」時是用「囗」來表示的,一方面為了將數字區別開來;更重要的是由於我國古代用毛筆書寫。而毛筆行書連筆書寫的習慣,寫「〇」比寫「囗」要方便得多,而銅錢外圓內方;所以零逐漸變成按逆時針方向畫「〇」,這就是中國零的符號出現。1180年金朝《大明歷》中就有「四百〇三」,「三百〇九」等數字。


據英國著名科學史專家李·約瑟博士的考證,「0」產生於中印文化,是中國首先使用的位值制促進了零的出現。印度是在中國籌算和位值制的影響下才創造「0」的符號。

⑤ +–×÷是怎麼來的

加減運算是人類最早掌握的兩種數學運算 ,且載於人類最早的文字記載中。古埃及的阿默斯紙草書就載有加號(Sign for Addition)及減號( Sign for Subtraction):向右走的兩條腿「+」是加號,而向左走的兩條腿「-」是減號。後者於莫斯科紙 草書中則表示「平方」。
乘法
奧特雷德於1631年在其著作《數學之鑰》(clavis mathematicae) 中首次以「×」表示兩數相乘,即現代的乘號,後日漸流行 ,沿用至今。萊布尼茨於1698年7月29日給J.伯努利的一封信內提出以圓點「·」表示乘,以防「×」號與字母X相混 淆。後來以「·」表示乘法的用法亦相當流行,現今歐洲大陸派(德、法、蘇等國)規定以「·」作乘號。其他國家則以「×」 作乘號,「·」為小數點。而我國則規定以「×」或「·」作乘號都可,一般於字母或括弧前的乘號可略去。

除法
1544年,施蒂費爾於其出版的《整數算術》(Arithmetica integra) 中以一個或一對括弧作除號(Signs for division),如以 8)24或8)24(表示24÷8;奧特雷德則以a)b(c表示b÷a=c;J.馬洪(1701年)則以D)A+B-C表示(A+B-C)÷D。至1545年, 施蒂費爾又改以大寫德文字母D表示除(Division),其後,斯蒂文亦採用了這符號,他以表示,而戈里馬德(1751年)則以反寫字母表示除,如124=3及a2b2a2。另外,昆尼亞於1790年出版的《數學原理》中,以平放的 小寫字母表示除。
現今之除號「÷」稱為雷恩記號(Rahn's notation),是瑞士人J.H.雷恩於1659年出版的一本代數書中引用為除號。至 1668年,他這本書之英譯版面世,這記號亦得以流行,沿用至今。 此外,萊布尼茲於他的一篇論文《組合的藝術》「Dissertatio de arte combinatoria」 內首以冒號「:」表示除,後亦漸通用, 至今仍採用。

⑥ 誰能給我一篇關於分數除法的小故事

某街發生了一起盜竊案。盜賊非常狡猾,現場沒有留下任何線索,而保險櫃里的錢卻不翼而飛了。盜賊怎麼會知道密碼的呢?柯南在現場發現了一張小紙條,上面寫著1008,1260,1386,1134這4個數字,可是密碼只能是3位數呀,它和這四個數有什麼關系呢?突然柯南腦中靈光一閃,他快速地計算了一下,然後在保險櫃上按了3個數字,保險櫃開了。你知道密碼是多少嗎?你怎麼得到的?
答案 1+8=1+2+6=1+1+3+4=9 1+3+8+6=18
2.果園里的蘋果樹是梨樹的3倍,老王師傅每天給50棵蘋果樹20棵梨樹施肥,幾天後,梨樹全部施上肥,但蘋果樹還剩下80棵沒施肥。請問:果園里有蘋果樹和梨樹各多少棵?我沒有被這道題嚇倒,難題能激發我的興趣。我想,蘋果樹是梨樹的3倍,假如要使兩種樹同一天施完肥,老王師傅就應該每天給「20×3」棵蘋果樹和20棵梨樹施肥。而實際他每天只給50棵蘋果樹施肥,差了10棵,最後共差了80棵,從這里可以得知,老王師傅已經施了8天肥。一天20棵梨樹,8天就是160棵梨樹,再根據第一個條件,可以知道蘋果樹是480棵。這就是用假設的思路來解題,因此我想,假設法實在是一種很好的解題方法。
3.阿拉伯數字的由來
小明是個喜歡問問題的孩子。有一天,他對0-9這幾個數字產生了興趣:為什麼它們被稱為「阿拉伯數字」呢?
於是他就去問他的當數學老師的媽媽:「0-9既然叫『阿拉伯數字』,那麼肯定是阿拉伯人發明的了,媽媽對嗎?」
媽媽搖搖頭,說:「阿拉伯數字實際是印度人發明的。大約在1500年以前,印度人就已經用一種特殊的字來表示數目,這些字有10個,只要一筆兩筆就可以寫成。後來,由於各國之間的接觸,這些數字傳入阿拉伯,阿拉伯人覺得它們很簡單,於是在自己的國家開始廣泛使用並且把他傳到全歐洲。就這樣,它們慢慢地就成了我們今天使用的數字。因為阿拉伯人在傳播這種數字方面,起的作用很大,人們也就習慣了稱這種數字為『阿拉伯數字』。」
小明高興地說:「原來是這樣。媽媽,這可不可以叫做『將錯就錯』呢?」小明和媽媽都笑了。

⑦ 國外沒有九九乘法表,那他們是怎麼做乘除法的

在我們中國,幾乎從幼兒園剛接觸數學就開始了背九九乘法表這一苦逼而又漫長的過程,記得小時候很多人為了背會九九乘法口訣,被老師批,被家長訓。但是到最後都背的滾瓜爛熟,而且用起來得心應手。但是不得不說,九九乘法表確實非常好用,它為每一位中國學生學習數學都奠定了一定的基礎。所以,中國的數學一直都是很牛逼的,從古至今一直稱霸於全世界。

眾所周知,外國是沒有九九乘法表的,那他們是怎樣算乘法的呢?其實,外國人也有自己的演算法,那就是採用畫線的方法計算乘法。

例如12×11,先畫一條豎線,代表10,再畫兩條豎線,代表2,「12」就是這樣表示:

再想像一下999×999,畫面太美……草稿紙起碼准備10米吧?

哈哈,這樣數點點會數到瞎眼吧……

可見一旦數字變大了,那麼計算量也就夠嗆了,估計數點點會累癱吧!

小夥伴們,這個時候發現九九乘法表的厲害了吧?然而,我們有幾個人知道九九表的是怎麼來的嗎?

春秋戰國時期,不但發明了十進位制,還發明了九九表。後來東傳入高麗、日本,經過絲綢之路西傳印度、波斯,繼而流行全世界。甚至有人把久久乘法表視為比中國四大發明還要重要的一大神器。可見它的地位是多麼的顯赫。

2015年3月,九九乘法表傳入英國後,因語言不同導致口訣變長,背誦起來很有難度,所以「一課一練」英國版很有可能改為12×12乘法表。

不得不膜拜我們國家的九九乘法表,實在是太強大了。如果我們跟外國人同時做十道計算題的話,估計我們都做完了他們才算完一道。知道外國人用「線條」計算乘法,真心佩服我們中國人的智慧!

⑧ 為什麼「加減乘」是從低位往高位進行運算的,而除是從高位往低位進行運算(這個問題困擾我好多年了)

筆算低位算起來自歐洲,不只是進位要改寫數字,當年歐洲人推崇筆算,我們可以理那是因為在歐洲,不只是由於阿拉伯數碼和筆算的引入大發簡化了運算(與用羅馬數字進行計算相比),從而推動了數學的快速發展.而是歐洲有些國家3位數讀數是先讀百再讀個再讀十,2位讀數先個再十,這是我從來自德國、比利時的學生家長中了解到的,無論是來自美國、日本、韓國大多是國家的學生和中國一樣都是高到低讀數.清末全盤搬進西洋學制、課程知識結構,全盤西化,學校數學課中全部採用筆算,不符合中國和世界上大多數國家的國情.數字一元思維,珠碼是二元思維,用腦部位不一樣,思維效果不一樣,效果是硬道理.
沈松年評論原文地址:從高位起算和低位起算談起作者:心算從高位起算和低位起算談起 劉芹英
經常聽到一些數學老師說:孩子學過珠心算後再上學,在計算時會產生困惑?因為珠算是從高位算起,而學校數學課上所學的筆算是從低位算起,學生先學過高位算起,又學習低位算起,學生就容易產生困惑.因此,很多小學數學老師就以此為由來反對學習珠心算.下面就從數學歷史發展的角度來談高位算起與低位算起.
一、 筆算的形成
印度創造了易寫的數碼,即我們現在所稱的阿拉伯數碼.(該數碼實際上是印度人創造的.只因在歷史上,該數碼是從阿拉伯國家傳入歐洲的,歐洲人就稱為阿拉伯數碼,傳遍世界).印度運用此數碼於計算,就有了一定的筆算形式;經過各國各地人們的不斷改進,成為今天人人熟知的筆算.
這種數碼在8世紀時開始傳入伊斯蘭國家.那時阿拉伯的文化中心有兩個:一個是東阿拉伯的巴格達,一是西阿拉伯的科爾多瓦(Cordoba,西班牙南部).當時沒有印刷術,書籍全憑抄寫,字體因人因地而異.也可能是因為通過不同的途徑傳播,東、西部數碼的寫法有很大區別.經過若干年的演變,差異越來越大.東阿拉伯的字體漸漸固定下來,形成一種獨特的數碼,至今很多伊斯蘭國家仍在使用.西阿拉伯的數碼較接近現今的世界通用數碼,在13世紀初由斐波那契介紹到歐洲.他在《算盤書》(Liber abaci)的開頭就提出了帶0號的印度—阿拉伯數碼:「這里是九個印度數碼 987654321,用這九個數碼,加上阿拉伯人稱之為零(zephirum)的符號0,任何數都可以寫出來.」[1]按照阿拉伯人的習慣,文字和數字是從左向右讀的.斐波那契的《算盤書》使印度—阿拉伯數碼得以推廣和流行,對於改變歐洲數學的面貌起了極為重要的作用.
由阿拉伯數碼形成的「筆算」,實際上只是一種記錄形式.因為「筆」本身是不會計算的,我們通常所說的筆算實際上就是筆錄題目,數字適當對位,逐位口算(心算)出結果,再用阿拉伯數碼記錄下來.簡言之:筆算就是口算加筆錄.因為阿拉伯數碼的最大優點是:大多可以一筆(除4和5外)寫出.所以用它筆錄顯得簡便.
二、筆算低位算起的來歷
由於珠算是從高位算起,筆算是從低位算起,很多人就把筆算作為衡量一種演算法好壞的標准,認為與筆算不一致的演算法就不好.其實,在筆算形成的初期,其加減乘除都是從高位算起的;就是現在,筆算的除法仍然是從高位算起.從筆算的演變和發展過程中,就可以看出:筆算的加減算和乘算也是從高位算起的,只是遇到進位時,需要改寫前面的數字,因此,筆算中的加減算和乘算才逐步改為低位算起.從下面的算式就可以看出:
例如:65 391 + 3 279 + 10 420 = 79 090
在當時的印度,其計算過程是: 65 391
3 279
10 420
78/ 98/0
9 09
這是印度12世紀沙盤上的加法[2],就仍保留這從高位算起的程式.這也證實了筆算的加減算形成的初期也是從高位算起的,在計算過程中,為了避免不停地改寫阿拉伯數碼的麻煩,才逐漸改為低位算起.至於乘算就不再舉例子了.
三、筆算與用羅馬數字計算的對比
憑借羅馬數字,是把數碼符號集攏起來,如何集攏,很麻煩;例如,上面算式中的三個C、C、C又不能直接合成三百.而憑借阿拉伯數碼,按位轉化為兩個碼相加,簡單容易.
下面我們從演算法的四個要素來分析對比:用阿拉伯數字的筆算和用羅馬數字進行運算的簡捷程度:
首先,我們從輸入來看:筆算只是把阿拉伯數字按位寫出排列對位即可;而羅馬數字相對就繁難一些,無法按位寫,每一位的數字又要按照「左減右加」的法則累起來,比筆算要復雜得多.其次,看儲存:二者差別不是太多,都是寫在紙上,只是羅馬數字要寫的多一些.再次,看運算:筆算是按照事先記住的加減162句口訣,在腦中算出答數;羅馬數字的運算就繁得多,象上面的數碼符號里,明明看到的是兩個「X」和一個「L」,又不能直接集攏在一起.最後,來看看輸出:筆算的輸出663,比羅馬數字的輸出DCLXIII,無論從讀或寫來看,都簡單得多.再來看乘除:
由於阿拉伯數碼和筆算的引入,使四則計算的繁難程度大大簡化了.其原因主要有兩個:一是阿拉伯數碼在表示多位數時採用了中國發明的「十進位值制」,再一個是阿拉伯數碼容易書寫.從而推動歐洲數學在文藝復興時期有較快的發展和進步.促成阿拉伯數碼和筆算變成世界通用的記數方式和運算模型.

希望幫得了你. http://blog.cntv.cn/12237092-3136416.html可以去這里看看喲.

⑨ 乘除法豎式是哪國何時由誰創造的發明之前的乘除怎麼算的

豎式的沿革沒有典籍記載

我國古代數學以計算為主,取得了十分輝煌的成就。其中十進位值制記數法、籌算和珠算在數學發展中所起的作用和顯示出來的優越性,在世界數學史上也是值得稱道的。

十進位值制記數法曾經被馬克思(1818—1883)稱為「最妙的發明之一」①。

從有文字記載開始,我國的記數法就遵循十進制。殷代的甲骨文和西周的鍾鼎文都是用一、二、三、四、五、六、七、八、九、十、百、千、萬等字的合文來記十萬以內的自然數的。例如二千六百五十六寫作■■■■(甲骨文),六百五十九寫作■■■■■(鍾鼎文)。這種記數法含有明顯的位值制意義,實際上,只要把「千」、「百」、「十」和「又」的字樣取消,便和位值制記數法基本一樣了。

春秋戰國時期是我國從奴隸制轉變到封建制的時期,生產的迅速發展和科學技術的進步提出了大量比較復雜的數字計算問題。為了適應這種需要,勞動人民創造了一種十分重要的計算方法——籌算。我們認為籌算是完成於春秋戰國時期,理由是:第一,春秋戰國時期,農業、商業和天文歷法方面有了飛躍的發展,在這些領域中,出現了大量比以前復雜得多的計算問題。由於井田制的廢除,各種形狀的私田相繼出現,並相應實行按畝收稅的制度,這就需要計算復雜形狀的土地面積和產量;商業貿易的增加和貨幣的廣泛使用,提出了大量比例換算的問題;適應當時農業需要的厲法,要計算多位數的乘法和除法。為了解決這些復雜的計算問題,才創造出計算工具算籌和計算方法籌算。第二,現有的文獻和文物也證明籌算出現在春秋戰國時期。例如「算」和「籌」二字出現在春秋戰國時期的著作(如《儀禮》、《孫子》、《老子》、《法經》、《管子》、《荀子》等)中,甲骨文和鍾鼎文中到現在仍沒有見到這兩個字。一二三以外的籌算數字最早出現在戰國時期的貨幣(刀、布)上。《老子》提到:「善計者不用籌策」,可見這時籌算已經比較普遍了。因此我們說籌算是完成於春秋戰國時期。這並不否認在春秋戰國時期以前就有簡單的算籌記數和簡單的四則運算。

關於算籌形狀和大小,最早見於《漢書·律歷志》。根據記載,算籌是直徑一分(合○·二三厘米)、長六寸(合一三·八六厘米)的圓形竹棍,以二百七十一根為一「握」。南北朝時期公元六世紀《數術記遺》和《隋書·律歷志》記載的算籌,長度縮短,並且把圓的改成方的或扁的。這種改變是容易理解的:長度縮短是為了縮小布算所佔的面積,以適應更加復雜的計算;圓的改成方的或扁的是為了避免圓形算籌容易滾動而造成錯誤。根據文獻的記載,算籌除竹籌外,還有木籌、鐵籌、玉籌和牙籌,還有盛裝算籌的算袋和運算元筒。唐代曾經規定,文武官員必須攜帶算袋。1971年八月中旬,在陝西寶雞市千陽縣第一次發現西漢宣帝時期(公元前73年到前49年)的骨制算籌三十多根,大小長短和《漢書·律歷志》的記載基本相同。1975年上半年在湖北江陵鳳凰山一六八號漢墓又發現西漢文帝時期(公元前179年到前157年)的竹製算籌一束,長度比千陽縣發現的算籌稍大一點。1980年九月,在石家莊市又發現東漢初期(公元一世紀)的骨制算籌約三十根,長度和形狀同《隋書·律歷志》的記載相近,這說明算籌長度和形狀的改變早在東漢初期已經開始。算籌的出土,為研究我國數學發展史提供了可貴的實物資料。

從而進行加、減、乘、除、開方以及其他的代數計算。

籌算一出現,就嚴格遵循十進位值制記數法。九以上的數就進一位,同一個數字放在百位就是幾百,放在萬位就是幾萬。這種記數法,除所用的數字和現今通用的印度-阿拉伯數字形式不同外,和現在的記數法實質是一樣的。籌算是把算籌一面擺成數字,一面進行計算,它的運算程序和現今珠算的運算程序基本相似。記述籌算記數法和運演算法則的著作有《孫子算經》(公元四世紀)、《夏侯陽算經》(公元五世紀)和《數術記遺》(公元六世紀)。負數出現後,算籌分成紅黑兩種,紅籌表示正數,黑籌表示負數。算籌還可以表示各種代數式,進行各種代數運算,方法和現今的分離系數法相似。我國古代在數字計算和代數學方面取得的輝煌成就,和籌算有密切的關系。例如祖沖之的圓周率准確到小數第六位,需要計算正一萬二千二百八十八邊形的邊長,把一個九位數進行二十二次開平方(加、減、乘、除步驟除外),如果沒有十進位值制的計算方法,那就會困難得多了。

古巴比侖的記數法雖然有位值制的意義,但是它是六十進的,計算比較繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且是象形的,例如用一個鳥表示十萬。文化比較發達的古希臘,由於看重幾何,輕視計算,記數方法十分落後,用全部希臘字母表示一到一

民創造的,但是印度在公元三世紀以前使用的記數法是希臘式和羅馬式兩種,都不是位值制,真正使用十進位值制記數法出現在公元六世紀末。由此可見,我國古代的十進位值制記數法和籌算,在世界數學史上應該佔有重要的地位。

籌算在我國古代用了大約兩千年,在生產和科學技術以至人民生活中,發揮了重大的作用。但是它的缺點也是十分明顯的:首先,在室外拿著一大把算籌進行計算就很不方便;其次,計算數字的位數越多,所需要的面積越大,受環境和條件的限制;此外,當計算速度加快的時候,很容易由於算籌擺弄不正而造成錯誤。隨著社會的發展,計算技術要求越來越高,籌算需要改革,這是勢在必行的。這個改革從中唐以後的商業實用算術開始,經宋元出現大量的計算歌訣,到元末明初珠算的普遍應用,歷時七百多年。《新唐書》和《宋史·藝文志》記載了這個時期出現的大量著作。由於封建統治階級對民間數學十分輕視,以致這些著作的絕大部分已經失傳。從遺留下來的著作中可以看出,籌算的改革是從籌算的簡化開始而不是從工具改革開始的,這個改革最後導致珠算的出現。

珠算是由籌算演變而來的,這是十分清楚的。籌算數字中,上面一根籌當五,下面一根籌當一,珠算盤中的上一珠也是當五,下一珠也是當一;由於籌算在乘、除法中出現某位數字等於十或多於十的情形(例如26532÷8,

採用上二珠下五珠的形式。其次,我們可以證明,從楊輝、朱世傑開始到元末丁巨、何平子、賈亨止的除「起一」法外的全部現今通用的珠算歌訣,是為籌算而設的。楊輝的《乘除通變本末》(公元1274年)和朱世傑的《算學啟蒙》(公元1299年)已經有相當完備的歌訣,但是楊輝在《乘除通變本末》中說:「下算不出『橫』『直』」,其中「橫」「直」顯然是指算籌的縱橫排列;朱世傑在《算學啟蒙》中提到「知算縱橫數目真」,也是這個意思。《丁巨演算法》(公元1355年)、何平子的《詳明演算法》(公元1373年)、賈亨的《演算法全能》(約公元1373年)也有相當完備的歸除歌訣,但是都沒有提到珠算,而《詳明演算法》還有許多籌算算草。歌訣出現後,籌算原來存在的缺點就更突出了,歌訣的快捷和擺弄算籌的遲緩存在矛盾。為了得心應手,勞動人民便創造出更加先進的計算工具——珠算盤。

現存文獻中最早提到珠算盤的是明初的《對相四言》。明代中期公元十五世紀中葉《魯班木經》中有製造珠算盤的規格:「算盤式:一尺二寸長,四寸二分大。框六分厚,九分大,……線上二子,一寸一分;線下五子,三寸一分。長短大小,看子而做。」把上二子和下五子隔開的不是木製的橫梁,而是一條線。比較詳細地說明珠算用法的現存著作有徐心魯的《盤珠演算法》(公元1573年)、柯尚遷的《數學通軌》(公元1578年)、朱載堉(1536—1611)的《算學新說》(公元1584年)、程大位的《直指演算法統宗》(公元1592年)等,以程大位的著作流傳最廣。

值得指出的是,在元代中葉和元末的文學、戲劇作品中有提到珠算的。例如元世祖至元十六年(公元1279年)劉因在他的《靜修先生文集》中有一首關於算盤的五言絕詩;陶宗儀在他的《輟耕錄》中把婢僕貶作算盤珠,要撥才動;《元曲選》「龐居士誤放來生債」提到「去那算盤里撥了我的歲數」,等等。文學、戲劇中用算盤珠作比喻,說明珠算盤已經比較流行,也說明它是比較時新的東西。因此可以認為,珠算出現在元代中葉,元末明初已經普遍應用了。

有的外國學者認為我國的珠算出現在漢代,他們的根據是漢徐岳著、北周甄鸞注的《數術記遺》已經明確提到珠算。我國數學家、數學史家錢寶琮(1892—1974)曾經考證過,《數術記遺》是甄鸞依託偽造而自己注釋的書。在北周時,乘、除運算都在上、中、下三層進行,又沒有簡化乘、除法的歌訣,因此甄鸞注釋的珠算,充其量不過是一種記數工具或者只能作加減法的簡單算盤,和後來出現的珠算是完全不同的。

珠算還傳到朝鮮、日本等國,對這些國家的計算技術的發展曾經起過一定的作用。日本人在十七世紀中葉,在中國算盤的基礎上,改成樑上一珠、珠作棱形的日本算盤。

閱讀全文

與印度人如何除法相關的資料

熱點內容
巴基斯坦和中國的關系為什麼這么好 瀏覽:853
伊朗和美國為什麼有仇 瀏覽:163
為什麼印尼人喜歡噴香水 瀏覽:145
印度殲10怎麼樣 瀏覽:676
越南馬皮涼在越南哪個位置 瀏覽:832
伊朗女人戴什麼手錶 瀏覽:993
買越南媳婦多少人民幣 瀏覽:413
去伊朗旅遊帶多少錢 瀏覽:23
想陪你很久很久義大利語怎麼說 瀏覽:789
英國人怎麼評價約翰 瀏覽:910
印度訂不到酒店怎麼辦 瀏覽:932
傳說對決印尼服怎麼進 瀏覽:673
關於英國論文怎麼寫 瀏覽:406
義大利有哪些品牌的車 瀏覽:581
伊朗對西班牙怎麼樣 瀏覽:895
1元換多少越南盾合適 瀏覽:172
越南610是什麼金 瀏覽:277
印尼什麼時發生地震 瀏覽:35
印尼紅龍魚15公分怎麼看 瀏覽:567
中國公元前900年什麼時期 瀏覽:601