① 每個國家古代的計數方法
古時候人們計數的方法各國都不一樣。列舉以下幾個:
1、中國古代的計數系統
中國在三千多年前的商代,已經建立起了完整的十進制系統,自從發明了算籌這種計算工具以後,中國人的計數系統有了很大的進步。在兩千多年前的春秋戰國時期,算籌在中國人手裡已經使用得非常普遍了。算籌就是一種細竹棍,它表示數字1——9有兩種方式:
縱式、橫式。
表示多位數字的方法是縱橫相間,這就避免了符號不獨立可能引起的混亂,例如22837的表示法是。由此可知,中國古代的計數系統是典型的十進位值制。
算」的原意就指的是算籌,中間的「目」表示桌上擺放若干根算籌,下面「艹」是支架,上面「&<1950;」表示它的質料。與算、籌同義的字還有「策」,古書稱「木細枝為策」,因此運籌、運算、計策、計算等在古代是近義詞。
《史記·張良》中有「運籌策帷幄之中,決勝於千里之外」的說法,說明當時軍事家在指揮一場戰役之前,在帳中也要用算籌作為工具進行計算和謀劃。
事實上,採用幾作進位制是不重要的,重要的是要有位值制概念。巴比倫人和瑪雅人有位值制概念,卻都不是十進制;古埃及和古希臘是十進制,卻都沒有位值制,只有中國是最早採用十進位值制的國家。
英國著名科學史家李約瑟曾說:「如果沒有這種十進位值制,就幾乎不可能出現我們現在這個統一化的世界了。」因此,首創十進位值制,是中國古代人民對世界做出的一項不可磨滅的貢獻。
2、古埃及在三千多年前的計數法如下
例如258寫作。這種計數法是十進制的,但沒有位值制;就以上符號而言,最大隻能表示99999,而且寫起來非常麻煩,我們現在只用5個符號就能表示的數字99999,他們卻要用45個符號。
3、古希臘人的計數系統
古希臘人的計數系統是十進制,但沒有位值制概念。他們用27個古希臘字母α、β、γ等在其上畫一橫杠來表示數字,前9個字母分別表示1——9,中間9個字母表示10——90,後9個字母表示100——900,按這種方式最大隻能表示999。
為了表示更大的數目,他們又引進新的計數符號。這種計數系統十分復雜,但由於沒有引進位值制,所以它無法保證任意大的數目都有相應的符號。
阿拉伯數字的起源:
公元500年前後,隨著經濟、種姓制度的興起和發展,印度次大陸西北部的旁遮普地區的數學一直處於領先地位。天文學家阿葉彼海特在簡化數字方面有了新的突破:他把數字記在一個個格子里,如果第一格里有一個符號,比如是一個代表1的圓點,那麼第二格里的同樣圓點就表示十,而第三格里的圓點就代表一百。
這樣,不僅是數字元號本身,而且是它們所在的位置次序也同樣擁有了重要意義。以後,印度的學者又引出了作為零的符號。可以這么說,這些符號和表示方法是阿拉伯數字的老祖先了。
阿拉伯數字使用注意事項:
阿拉伯數字容易通過改變小數點位置而產生變化。所以在特殊場合(如銀行)不能完全替代大寫的漢字。
阿拉伯數字使用規則:
在科技書刊中,阿拉伯數字因其「筆畫簡單、結構科學、形象清晰、組數簡短」等特點,有著很高的使用頻率,其用法是否正確及規范,直接關繫到科技期刊的質量。
印度數字:
公元3世紀,古印度的一位科學家巴格達發明了阿拉伯數字。最古的計數目大概至多到3,為了要設想「4」這個數字,就必須把2和2加起來,5是2加2加1,3這個數字是2加1得來的,大概較晚才出現了用手寫的五指表示5這個數字和用雙手的十指表示10這個數字。
這個原則實際也是數學計算的基礎。羅馬的計數只有到Ⅴ(即5)的數字,Ⅹ(即10)以內的數字則由Ⅴ(5)和其它數字組合起來。Ⅹ是兩個Ⅴ的組合,同一數字元號根據它與其他數字元號位置關系而具有不同的量。
這樣就開始有了數字位置的概念,在數學上這個重要的貢獻應歸於兩河流域的古代居民,後來古鯿人在這個基礎上加以改進,並發明了表達數字的1,2,3,4,5,6,7,8,9,0十個符號,這就成為記數的基礎。八世紀印度出現了有零的符號的最老的刻版記錄。當時稱零為首那。
兩百年後,團結在伊斯蘭教下的阿拉伯人征服了周圍的民族,建立了東起印度,西從非洲到西班牙的阿拉伯帝國。後來,這個伊斯蘭大帝國分裂成東、西兩個國家。
由於這兩個國家的各代君王都獎勵文化和藝術,所以兩國的首都都非常繁榮,而其中特別繁華的是東都——巴格達,西來的希臘文化,東來的印度文化都匯集到這里來了。阿拉伯人將兩種文化理解消化,從而創造了獨特的阿拉伯文化。
大約700年前後,阿拉伯人征服了旁遮普地區,他們吃驚地發現:被征服地區的數學比他們先進。於是設法吸收這些數字。
771年,印度北部的數學家被抓到了阿拉伯的巴格達,被迫給當地人傳授新的數學符號和體系,以及印度式的計算方法(用的計演算法)。由於印度數字和印度計數法既簡單又方便,其優點遠遠超過了其他的計演算法,阿拉伯的學者們很願意學習這些先進知識,商人們也樂於採用這種方法去做生意。
後來,阿拉伯人把這種數字傳入西班牙。公元10世紀,又由教皇熱爾貝·奧里亞克傳到歐洲其他國家。公元1200年左右,歐洲的學者正式採用了這些符號和體系。
至13世紀,在義大利比薩的數學家費婆拿契的倡導下,普通歐洲人也開始採用阿拉伯數字,15世紀時這種現象已相當普遍。那時的阿拉伯數字的形狀與現代的阿拉伯數字尚不完全相同,只是比較接近而已,為使它們變成1、2、3、4、5、6、7、8、9、0的書寫方式,又有許多數學家花費了不少心血。
② 15世紀義大利的一本算數書中介紹了一種「格子乘法」。你能仿照右面的例子算出「425×37」的面積么
425*37=15725
「格子乘法」是15世紀中葉,義大利數學家帕喬利在《算術、幾何及比例性質摘要》一書中介紹的一種兩個數的相乘的計算方法。
在計算的過程中先畫一個矩形,把它分成3×2個小格,在小格邊上依次寫下因數、因數的各位數字,再用對角線把小格一分為二,分別記錄上述各位數字相應乘積的十位數與個位數,把這些乘積由右到左,沿斜線方向相加,相加滿十時要向前進一。算5*3=15,寫在右上角的格子上,1寫左邊,5寫右邊,以此類推,填好格子;最後,把同一斜線上的數相加:5落下;5+3+4=12,向前進一位,2寫在下左方;1+6+1+8+1=17,向前進一位,7寫在左下方;0+2+2+1=5,5寫在左上方,最後1落下在左上方,因此得到:425*37=15725。
③ 義大利數學帶小數點的除法怎麼寫
首先把帶小數點的分數化為分子
和分母都是正整數的形式,
這個步駎就是通過分子和分
母同時乘以10的r次方來完成。
然後利用豎式除法進行除法
計算,直到除盡,
或按照題目要的精確度
達到最後的一步,
然後用橫式寫出答案就算
全部完成!
④ 義大利格子乘法的原理是什麼
格子乘法的原理如下:
先畫一個矩形,根據兩個乘數的位數,把它分成對應位數乘位數個小格,在小格邊上依次寫下乘數、被乘數的各位數字,再用對角線把小格一分為二,分別記錄上述各位數字相應乘積的十位數與個位數,把這些乘積由右到左,沿斜線方向相加,相加滿十時要向前進一。
例如計算乘積128乘456,先畫一個矩形,把它分成3乘3個小格,在小格邊上依次寫下乘數、被乘數的各位數字,再用對角線把小格一分為二,分別記錄上述各位數字相應乘積的十位數與個位數,把這些乘積由右到左,沿斜線方向相加,相加滿十時要向前進一,最後得到128乘456等於58368。
簡介:
格子乘法常用於兩位數及以上的乘法算式,對比於我們常用的列豎式演算法,格子乘法相對費點時間,但是正確率卻遠高於列豎式演算法。
格子演算法介於畫線和算式之間。這種方法傳入中國之後,在明朝數學家程大位的《演算法統宗》一書中被稱為鋪地錦。
⑤ 義大利格子乘法怎麼算264✘37
義大利格子乘法:264×37=9768。
請看下圖格子裡面的演算法,最後總數加的時候是按照斜線里所有數的和。