导航:首页 > 中国讯息 > 用物理学如何表示中国

用物理学如何表示中国

发布时间:2022-10-25 07:23:52

A. 中最早使用“物理学”这个词的是谁

明末清初方以智着《物理小识》,首先用“物理”一词。

B. 我国古代的物理学成就有哪些

中国是世界文明发达最早的国家之一,物理学在中国有悠久的历史。
一 中国古代物理学史概述
二 力学
1 杠杆原理
2 滑轮与辘轳
3 尖劈与斜面
4 重心与平衡
5 力
6 刻舟求剑
7 浮力与比重
8 陀螺与平衡环
9 弹性变形与弹性定律
10 横梁的学问
11 大气压
12 空气动力学及飞行幻想
三 声学
四 光学
五 电与磁
六 热
先秦时期的伟大哲学家墨翟(约公元前468-前376)及其墨家学派 (公元前4世纪-公元前3世纪)在他们的论着《墨经》中记述了大量的物理知识,这是春秋战国时期物理学成就最大的学派,《墨经》的主要成就在力学与光学方面。它探讨了力的定义,叙述了惯性运动,研究了杠杆、滑轮、轮轴、斜面等装置省力的原因,以及浮力与平衡原理,指出了光的直线传播及反射规律以及小孔、平面镜、凹凸面镜的成像情况;观察了温度与火色的关系。同时期的《考工记》是应用力学、声学方面的书,记载了滚动摩擦、斜面运动、惯性现象、抛物轨道、水的浮力、材料强度以及钟、鼓、磬的发音、频率、音色、响度及乐器形状的关系。这时期的《管子·地数篇》、《鬼谷子》、《吕氏春秋》等书中还记载了天然磁石的吸铁现象以及最早的指南针“司南”。
汉代王充(27~约97)的《论衡》是中国中古时期的网络全书。在力学方面指出外力能改变物体的运动状态,改变运动速度。而内力不能改变物体的运动,还讨论了相对运动,在声学方面研究了声的发生、传播与衰减,并用水波做比喻。在热学方面研究了热的平衡、传导及物态变化。在光学方面阐述了光的强度、光的直线传播及球面聚焦现象。在电磁学方面记录了摩擦起电及磁指南器。
在唐代,《玄真子》中记叙了人造虹的简单实验:“背日喷水”。唐人将风力分为八个等级。了解到共鸣的道理并应用于音乐中,并指出了雷与电的关系。
宋代沈括(1031-1095)的《梦溪笔谈》具有很高的科学价值,被称为 “中国科学史上的坐标”,其主要成就是在声学、光学、磁学方面。他研究了声音的共振现象、针孔成像与凹凸镜成像规律,形象地说明了焦点、焦距、正倒像等问题;研究了人工磁化方法,指出了把磁场的磁偏角,讨论了指南针的装置方法,为航海用指南针的制造奠定了基础。他还研究了大气中的光、电现象。
元代的赵友钦(1279-1368)在《革象新书》中研究了光的直进、针孔成像,利用模拟实验研究月亮盈亏以及日、月蚀。他擅长用比喻解释自然现象,使之生动、形象,易于被人们理解。
在明、清时代,朱载堉(1536-1610)在《乐律全书》中用精密方法首次阐明了音乐中的十二平均律。方以智(1611-1671)兼取古今中外知识精华,在《物理小识》中涉及力、光、磁、热学,研究了比重、浓度、表面张力及杠杆原理,螺旋原理,研究了光的反射、折射、光学仪器,进行了分光实验解释虹,还研究了磁偏角随地域的变化以及金属导热问题。《物理小识》是300年前的一部科学着作。

我国是对磁现象认识最早的国家之一,公元前4世纪左右成书的《管子》中就有“上有慈石者,其下有铜金”的记载,这是关于磁的最早记载。类似的记载,在其后的《吕氏春秋》中也可以找到:“慈石召铁,或引之也”。东汉高诱在《吕氏春秋注》中谈到:“石,铁之母也。以有慈石,故能引其子。石之不慈者,亦不能引也”。在东汉以前的古籍中,一直将磁写作慈。相映成趣的是磁石在许多国家的语言中都含有慈爱之意。

C. 我国何时开始使用“物理学”一词

“物理学” 一词是怎样来的,我国的物理教学起源于何时?是怎样发展起来的?这是很多学习物理的同学所共同关心的问题.
我们今天所说的“物理学”一词,有两个来源:一个是由西方经日本转译到中国的;另一个则是“土生”的,即出自中国的“物理”一词.下面对此分别介绍.
“物理学” 最早属于哲学的一部分.素有“古代西方最博学的人”之称的古希腊哲学家亚里士多德(Aristotle,384BC—322BC)用希腊文写作“φυσιкα”,指自然哲学.(早在1687年牛顿发表其运动定律时还是用自然哲学来命名的,他当时的书名为《自然哲学的数学原理》,用拉丁文所写)亚里士多德的“自然哲学”(“φυσιкα”)后来被译为拉丁文“physica”,再转译为英文“physics”;1851年日本人川本幸民将英文的“physics”译为日本汉字“物理学”;1879年日本人钣盛挺造出版“物理学”一书;1900年中国的王季烈和日本人藤田丰八将该书译为汉译本“物理学”,该名称一直沿用至今.
“物理”一词早在我国的晋代就出现了,泛指事物之理.这一说法起源于我国战国时期庄子(BC369—BC286)的“析万物之理”一句.1607年徐光启和利马窦翻(意大利人,Mateo Ricci,1552—1633)译的欧几里德(Euclid,330BC—275BC)的《几何原本》前六卷时,徐光启作的该书序言中也谈到了“物理” 一词.明末清初方以智着《物理小识》一书,内容很广,包括历法、医药、器用、金石等.但它跟由西方经日本传入我国的“物理学”具有不同的内涵.
在西方发展起来的自然科学作为教学内容是于1845年出现于我国的某些私立学校的课堂的.当时设“格致”课(“格致” 一词最早出自《大学》中“致知在格物”,即穷究事物的原理以获得知识.鲁迅在《呐喊自序》一文中还用该词表示清末所开的物理、化学等内容)但该课最初的内容与前面所说的由“physics”转译过来的“物理学”的内容并不一样.当时的“格致”课的内容除物理外,还有数学、化学、动物、植物和矿物等.1862年公立学堂同文馆成立,数学从格致中分出;1899年在前京师大学堂,化学被分出.
1902年我国中学开的课就开始分设物理、化学与博物.这里的“物理”就已经是西方经日本传入我国的“物理学”了.由此可见,“物理学”作为专门的独立学科在我国讲授也只有100年左右的历史,作为物理教师,对这一点知识有所了解,我觉得还是有必要的.
随着科学和技术的进步,物理学的内容也在不断地丰富和发展.比如,有关原子核、核能、量子力学、相对论、场论等内容就远不是当年由日本传入我国的“物理学”所能包含的.
就拿力学来说吧,目前“非线性系统的复杂行为”、“混沌与分形”等概念也已经引入物理学的学科领域.作为物理教师,在理解物理学的词源时,也必须看到学科的发展. 要用“与时俱进”的眼光看待“物理学”
主要参考文献
1.漆安慎,杜婵英<力学基础>
2.郭奕铃,沈慧君.《物理学史 》 清华大学出版社,2002.8
3.吴国盛.《科学的历程》,北京:北京大学出版社,2002,10
4.河南师范大学 万凌德教授

D. 国际上以中国人名字命名的数学物理成果有什么

以中国人姓名命名的数学成果 1.刘徽原理、刘徽割圆术:魏晋时期数学家刘徽提出了求多面体体积的理论,在数学史上被称为“刘徽定理”;他发现了圆内接正多边形的边数无限增加,其周长无限逼近圆周长,创立了“刘徽割圆术”.
2.祖率:南北朝数学家祖冲之将π计算到小数点后第七位,比西方国家早了1000多年.被推崇为“祖率”.
3.祖暅原理:祖冲之之子祖暅提出了“两个几何体在等高处的截面积均相等,则两体积相等”的定理,该成果领先于国外2000多年,被数学界命名为“祖暅原理”.
4.贾宪三角:北宋数学家贾宪提出“开方作法本源图”是一个指数是正整数的二项式定理的系数表,比欧洲人所称的“巴斯卡三角形”早六百多年,该表称为“贾宪”三角.
5.秦九韶公式:南宋数学家秦九韶提出的“已知不等边三角形田地三边长,求其面积公式”,被称为“秦九韶”公式.
6.杨辉三角:南宋数学家杨辉提出的“开方作法本源”,后又称“乘方术廉图”,被数学界命名为“杨辉三角.”
7.李善兰恒等式:清代数学家李善兰在有关高阶差数方面的着作中,为解决三角自乘垛的求和问题提出的李善兰恒等式,被国际数学界推崇为“李善兰恒等式”.
8.华氏定理、华—王方法:1949年,我国着名数学家华罗庚证明了“体的半自同构必是自同构自同体或反同体”.1956年阿丁在专着《几何的代数》中记叙了这个定理,并称为“华氏定理”.此外,他还与数学家王元于1959年开拓了用代数论的方法研究多重积分近似计算的新领域,其研究成果被国际誉为“华—王方法.”
9.胡氏定理:我国数学家胡国定于1957年在前苏联进修期间,关于数学信息论他写了三篇论文,其中的主要成就被第四届国际概率论统计会议的文件汇编收录,并被誉为“胡氏定理”.
10.柯氏定理:我国数学家柯召于20世纪50年代开始专攻“卡特兰问题”,于1963年发表了《关于不定方程x2-1=y》一文,其中的结论被人们誉为“柯氏定理”,另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”.
11.王氏定理:西北大学教授王戍堂在点集拓扑研究方面成绩卓着,其中《关于序数方程》等三篇论文,引起日、美等国科学家的重视,他的有关定理被称为“王氏定理”.
12.陈氏定理:我国着名数学家陈景润,于1973年发表论文,把200多年来人们一直未能解决的“哥德巴赫猜想”的证明推进了一大步,现在国际上把陈景润的“1+2”称为“陈氏定理”.
13.侯氏定理:我国数学家侯振挺于1974年发表论文,在概率论的研究中提出了有极高应用价值的“Q过程惟一性准则的一个最小非负数解法”,震惊了国际数学界,被称为“侯氏定理”,他因此荣获了国际概率论研究卓越成就奖——“戴维逊奖”.
14.杨—张定理:从1965年到1977年,数学家杨乐与张广厚合作发表了有关函数论的重要论文近十篇,发现了“亏值”和“奇异方向”之间的联系,并完全解决了50年的悬案——奇异方向的分布问题,被国际数学界称为“杨—张定理”或“扬—张不等式”.还有"侯氏制碱法"——在本世纪30年代,中国化学家侯德榜首创了联合制碱法。"吴公式"——1950年数学家吴文俊发现关于示性类公式,这是拓扑学中的基本公式。"黄方程"——中国固体物理学家黄昆,从1950年开始着重研究极性晶体的光学振动模型、综合介质的电磁理论和晶体动力学的观点,提出了一对唯象的方程。"吴氏通用理论"——中国着名工程热物理学家吴仲华,50年代初在国际上首次提出了"叶轮机械三元流动理论".“钱 伟 长 法” — 中 国 着 名 力 学 家 钱 伟 长, 在 力 学 研 究 中 成 功 地 用 系 统 摄 动 法 处 理 非 线 性 方 程“冯 氏 效 应” — 中 国 生 物 学 家 冯 德 培, 在 肌 肉 产 生 热 的 研 究 中, 发 现 牵 拉 能 使 肌 肉 放 热。“夏 不 等 式”与“夏 道 行 函 数” — 中 国 数 学 家 夏 道 行 在 泛 函 积 分 和 拟 不 变 测 度 论 方 面 取 得 研 究 成 果, 叫“夏 不 等 式”;在 解 析 函 数 方 面 的 研 究 成 果, 被 称 为“夏 道 行 函 数”。

“陈 氏 定 理” — 数 学 家 陈 景 润 1972年 初 提 出 证 明 哥 德 巴 赫 问 题 的 论 文, 论 证 了 一 个 大 偶 数 可 表 示 为 一 个 素 数 及 一 个 不 超 过 二 个 素 数 的 乘 积 之 和 (简 称“1+2”)。

“王 氏 大 麦” — 中 国 作 物 育 种 专 家、 生 物 统 计 学 家 王 绶 培 育 成 功 抗 冻、 抗 锈 力 强 的 大 麦 品 种。

“蔡 氏 核 区” — 中 国 生 理 学 家 蔡 翘, 在 研 究 澳 洲 袋 鼠 的 脑 结 构 中, 发 现 并 详 细 描 述 了 脑 内 顶 盖 部 一 个 神 经 核 连 接 关 系, 被 称 为“蔡 氏 核 区”。 “龚 氏 物 质” — 中 国 科 学 家 龚 立 三, 1981年 在 美 国 从 事 遗 传 工 程 研 究, 组 建 了 一 个 关 系 到 生 物 细 胞 对 外 抗 性 (如 抗 盐、 抗 旱) 的 新 质 粒, 并 用 这 种 质 粒 创 造 了 具 有 固 氮 作 用 和 能 抗 高 盐 的 新 生 物 体, 为 人 工 合 成 新 生 物 的 研 究 作 出 了 重 大 贡 献, 这 两 种 物 质 均 以 他 的 姓 氏 命 名。

“LO 克 隆 株” — 中 国 上 海 医 学 专 家 林 云 璐 (女), 在 英 国 进 修 期 间, 于 1982年 2月 选 择 出 国 际 第 一 株 小 鼠 甲 型 流 感 病 毒 特 异 杀 伤 细 胞 克 隆。 她 的 研 究, 为 临 床 制 备 疫 苗、 防 治 甲 型 流 感 提 供 了 可 靠 的 理 论 依 据。 她 的 导 师 特 用 林 云 璐 姓 氏 的 第 一 个 字 母 命 名 为“LO 克 隆 株”。

“修 氏 理 论” — 中 国 女 医 学 家 修 瑞 娟, 1982年 在 美 国 进 修 时, 发 现 并 首 次 证 明 了 各 级 微 动 脉 自 律 性 运 动 是 以 波 浪 式 进 行 传 播 的, 提 出 了 微 循 环 对 人 的 器 官 和 组 织 的 灌 注 的 新 理 论 — 海 涛 式 灌 注, 被 称 为“修 氏 理 论”。

“毛 粒 子” — 美 国 物 理 学 家、 诺 贝 尔 奖 金 获 得 者 格 拉 肖 把 新 发 现 的 亚 夸 克 粒 子 命 名 为“毛 粒 子”, 他 说:“因 为 这 与 中 国 的 毛 泽 东 有 联 系。 按 照 他 的 哲 学 思 想, 自 然 界 有 无 限 的 层 次, 在 这 些 层 次 内 一 个 比 一 个 更 小 的 东 西 无 穷 地 存 在 着。 因 此 我 想 取 用 他 的 名 字”。 早 在 1953年, 毛 泽 东 就 明 确 提 出 了“物 质 是 无 限 可 分 的, 基 本 粒 子 也 是 无 限 可 分” 的 科 学 论 断。

E. 如何使用物理学解释忠、孝、仁、爱

忠———惯性(保持原来运动状态)
孝———重力(最终回到土地母亲的怀抱)
仁———水的浮力(对物体的承载 厚德载物)
爱———电荷之间的吸引力 万有引力(相互爱慕和吸引)

F. 物理学的进步对社会的贡献

物理学的发展和人类科技的进步 世界从蒙昧到明丽,科学关照的光辉几乎从没有终止过任何瞬间,一切模糊而不可能的场景和一切超乎寻常的想象,都极可能在科学的轻轻点缀之下变得顺从、有序、飘逸而稳定。风送来精确和愉悦的气息,一个与智慧和灵感际遇的成果很可能转眼之间就以质感的方式来到人间。它在现实中矗立,标明今天对于昨天的胜利;或者标志人们昨天的生活方式已经一去不复返;或者标志一个科学伟人已徐徐来到人间……在人类的黎明,或我们的知识所能知道的过去的那些日子,我们确实可以看到科学在广博而漫长的区域里经历了艰难与失败,但它更以改变一切举足轻重的力量推动着历史滚滚前行,卓然无匹地建立了一座座一望无际的光辉丰碑。信心、激情、热望与无限的快乐就是这些丰碑中任何一座丰碑所暗示给我们的生活指向,使我们笃信勤奋、刻苦钻研、热爱生活、深思高举……与此同时,我们也更加看到了科学本身深深的魅力,人文的或自然的,科学家的或某个具体事物的,都如一面垂天可鉴的镜子矗立在我们面前,我们因为要前进和向上就无可回避地站在它的面前梳理自己的理性和情感,并在它映照灿烂光辉中汲取智慧和力量,从而使我们的创造性更加有所依托,更加因为积累的丰厚显得更加强劲可靠。
在人类发展的每一个阶段,物理学始终站在解放生产力的前沿,而在物理学发展中的每一次小小的进步,都伴随着极大的艰难与曲折,都是在传统与现实之间的长期碰撞中才得以获得发展和进步,其间既闪耀着拓荒者们智慧的灵光,同时也有让无数科学先辈们在追求科学真理的道路上进行不曲不挠的斗争中挥洒的血光与泪光。作为新时期的青少年,非常有必要踏寻这条荆棘之路,我们并不期望大家每一次在这条路上都能采撷到烂漫的鲜花,哪怕每一次只要能在这条路上闻到沁人心脾的花香,也算是对无数科学先辈们英魂的告慰。这就是我们开展本次科普知识系列讲座的初衷。 (一)物理学的启蒙与发展阶段 物理学的发展经历了十分漫长的启蒙阶段。在中世纪以前,物理学一直没有被确认为一门独立的科学,它在相当长的时间内被划分到哲学这一范畴。在这一漫长的时期内,人们都是根据当时生产力的需求或者统治者的意志去开发和利用物理学知识(从无意识到潜意识),是以我根据人类发展进程中生产力的发展水平以及应用物理学知识的程度,把这个时期物理学的启蒙阶段作以下划分:
1、火器时代:
人类的祖先首先进行了手和脚的分工,用自由之手制造工具,提高了劳动效率。这一时期人类最早制造的工具就是石器,石器的制造宣告了劳动的开始,同时也宣告了简单物理学的启蒙。
随着石器的发展,出现了较为复杂的工具―――弓箭,从而产生了“狩猎”这个最早的生产部门。人类祖先凭自己的智慧和经验制造了石斧、石刀和弓箭,我们在这里可以用物理学的原理说明其优越性:压强和压力成正比,和受力面积成反比。石斧的石刀的锋刃做得很薄就是为了通过减小受力面积来增大压强,使它们在不大的压力作用下就能够进入到物体里去;弓箭的使用不仅用到了物理学中的压强知识,还用到了牛顿第三定律――当箭给弓弦一个作用力时,弓弦同时也给箭一个反作用力,这样才能把箭射出。当时这种微妙的思想也被祖先们挖掘出来,足见祖先思想的进步。
我们知道,“钻木取火”在人类发展史上有着巨大的意义。可以毫不夸张地讲这是人类科技史上的第一次伟大的革命。随着人工取火的实现,标志着人类已经“在实践上发明机械运动可以转化为热”,“第一次使人类支配了一种自然力,从而最终把人同动物分开”。
有了随时可以制造火的技术,才能使火进入到人类生产和生活的各个领域。在生产上,人们首先发明了用火烧制陶器―――制陶技术的出现,标志着人类对材料的加工第一次改变了材料的性质,从而创造了一种人工材料,并在加工过程中第一次使用了自然能源。后来人类又学会了炼铜和炼铁的技术。世界上最早的生铁冶炼技术,出现在我国春秋时代,到战国时代,铁器已被广泛应用。至东汉时期,已有高五、六米、容积三四十立方米的大型冶铁高炉。在铁的基础上,中国还最早发明了炼钢技术,与炼钢工艺同时还发展了淬火技术。这样,大约到汉末,中国古代的冶铁、铸锻、炼钢和淬火技术已经形成了一个比较完整的体系,各种工艺方法已大致齐备,在当时世界上处于绝对领先地位。从而奠定了整个封建时代最基本的材料的加工技术基础。
在取火和用火的技术条件下,人类实现了从石器向铜器和铁器时代的转换在人类历史上引起了生产工具的革命,大大地推动了农业和手工业的发展,从而使生产力有了前所未有的进步。而且铁器文明不只是技术的发展,还推动了科学的诞生。2、领先世界的中世纪中国物理学
在中国几千年的封建社会里,在战乱不断的历史缝隙里,中国的科学技术并没有放慢前进的步伐,中国古代的科学技术系统逐渐得以提高和充实。并涌现出如王充、张衡、刘徵、祖充之、贾思勰、毕升、沈括等着名的科学家。其中张衡曾制造了世界上最早的利用水力转动的浑象,即浑天仪,以及一种能测定地震震中方向的仪器,定名为“候风地动仪”,这是世界上第一台地震仪,其灵敏度很高,比欧洲地动仪早1700多年;在度量衡这个领域里,不论是我国在远古时期发明的在天文上通过立圭表测影进行观象授时,还是后来人们在实践中发明的利用静水压强来量度时间的仪器―――漏刻,在没有钟表的古代是一项非常了不起的发明,在远距离计量长度时,那时候还发明了计量里程的鼓车,当车前进时,利用车轮的转动,可直接或间接地把车行驶的距离表示出来,这在当时世界上都堪称是首屈一指的;到宋元时期,由于生产的发展,经济的繁荣,实行扶植科技的政策及民族之间、中外之间的科学技术交流,宋元时期的科学和技术在隋唐的基础上,达到了整个古代科学技术发展的高峰。这一时期,冶金技术、名窑瓷器、建筑技术、纺织技术、水利建设、造船和航海技术都有巨大的发展,特别值得一提的是作为中国古代四大发明之一的指南针在不断的改进中已被广泛应用到航海,作为四大发明之一的火药在火器和兵器的改进技术上大显神威,史书上记载的“飞空击贼震天雷炮”和“神火飞鸦”,至今仍作为现代火箭与火箭炮的雏形,作为四大发明之一的胶泥活版印刷术对世界文明的发展与进步起到巨大的推动作用……
总之,中世纪中国科学技术发展的成绩是喜人的,但随着时间的发展,中国科技在以后的岁月里进入缓慢发展时期,而欧洲科技在度过科学的“黑暗时期”之后,正一日千里地兴起,并很快地赶超了中国。 3、后来崛起的辉煌灿烂的西方物理学
在这里值得一提的是西方在这个时期的文明。在封建社会以前,古希腊的科学和文化在欧洲处于领先地位:当时最着名的学者就是后来被西方史学家称为“科学之父”的泰勒斯,他提出了影子与实物长度成正比关系的原理,并利用这一原理准确地测量计算了埃及金字塔的高度;同一时期还出现了另一位为后世称颂不已的古希腊的学者―――毕达哥拉斯,他提出了数学是宇宙万物之本的学说,并以提出毕达哥拉斯定理(即勾股弦定理)而闻名,他还发现了无理数,引起了第一次“数学危机”;还有当时很有影响的科学权威―――留基伯,他和他的继承人德谟克利特提出了原子论,要知道原子论是现代科学的基石;在古希腊学者中,对后世影响最大的人物是集雅典学派之大成的亚里斯多德,他对天文学、物理学、生物学、医学等方面都有深入研究,在当时的自然科学的发展中作出很大的贡献;古希腊学者中还有一位声名显赫的科学家―――阿基米德,他发现了浮力定律、杠杆原理等,并利用杠杆原理,巧妙地发明了滑轮、螺旋器,以阿基米德命名的阿基米德螺线,在现代机械中应用极为广泛,他是一位非常重视实验的发明家,曾创造了许多仪器和机械,特别在军事上发明甚多,此外他在天文学、几何学、数学、圆周率等方面均有特别的贡献。所以科学史上称阿基米德是“站在整个希腊、罗马古代科学家的最高峰而为亚历山达里亚时期增添了光彩”,“是理论天才与实践天才集于一身的理论化身,与近代的伟大人物相匹比,在很多领域都有巨大的独创和真正的发现”……
在中世纪,欧洲在天文物理学方面发展迅猛,成效卓然。其中的代表人物是哥白尼、布鲁诺、第谷和刻卜勒。哥白尼的伟大之处是实现了太阳中心说和前人已有的数学方法的结合,使太阳中心说牢固树立在实际观测与科学运算之上,使科学进入了新纪元。他在1543年出版的《天体运行论》中指出:⑴、地球不是宇宙的中心,而仅仅是引力月球轨道的中心;⑵、所有天体都绕太阳运转,所以太阳在宇宙处于中心位置;⑶、地球到太阳的距离远远小于地球到恒星的距离,所以恒星看起来是不动的;⑷、地球像其他行星一样绕太阳运转,太阳的视运动起因于地球的运动;⑸、行星的表现逆动不是它本身运动引起的,而来自于地球的运动。哥白尼还大体上描绘了太阳系结构的真实图景―――人们看到的日月星辰东升西落,乃是地球自身转动的结果;火星、木星等行星在天空中有时顺行,有时逆行,并非天皇教会所说的“动作奇特,行踪诡秘”,而是由于它的绕日运行的轨道和速度不同所造成的综合表现。哥白尼作为一名天主教徒,十分了解他的学说的“危险性”,所以他迟迟没有发表。经过他的朋友再三敦促,在他去逝的那一年(1543年)才把《天体运行论》手稿复印发表。
意大利天文学家布鲁诺是哥白尼学说的积极宣传者和捍卫者,1584年他发表了《论无限性、宇宙与世界》一书,发展了哥白尼的学说,成着名的天文学家。不幸的是,由于他极力反对地心说,拥护哥白尼的日心说,主张宇宙是无限的,被教会打成异教徒,并于1600年3月17日在罗马的鲜花广场上被活活烧死。
1600年后,刻卜勒当了第谷的助手,开始与第谷合作,这是科学史上科学合作的美妙范例。1601年第谷去世时把他一生中收集的极其珍贵的全部天文资料都留给了刻卜勒,刻卜勒经过认真总结和研究,于1609年出版了他的着作,公布了关于行星运动的两个定律―――“轨道定律”和“面积定律”,又经过9年的研究和无数次运算后,他发现了第三定律―――“周期定律”(关于三大定律,这里不作一一赘述)。刻卜勒行星三大定律的伟大贡献,在于把哥白尼的理论向前推进了一步,为专业天文学家和数学家提供了支持日心说的强有力的论据,被后人称誉他为“天文立法者”。
这里要说的另一位科学家伽利略大家可能比较熟悉(摆的等时性原理和着名的比萨斜塔落体实验),他在近代科学史上,是一位划时代的代表人物,他在天文学、力学、物理学、数学等许多方面都有重大贡献,被公认为近代实验科学的创始人,为后来经典物理学的建立作出不可磨灭的贡献,是当之无愧的“近代物理学之父”。(二)物理学发展的第一个黄金阶段―――经典力学体系的建立
伽利略的出现,开辟了实验物理学的先河,为后来经典物理学的建立提供了大量的论据,但是他的许多发现都是对亚里斯多德学说的否定,因此也受到罗马教廷的警告。他于1632年发表了《关于托勒密和哥白尼两大世界体系的对话》,更加激怒了教会甚至教皇本人。1633年伽利略被宗教裁判所传唤,并被判处终身监禁。在监禁中他克服重重困难,写出了科学巨着《关于两种新科学的对话》。伽利略设法将此着作秘密送到荷兰,于1638年出版,为近代科学的发展作出了巨大的贡献。他在新对话中关于力学知识一系列基本概念和基本定律的总结,成为后来牛顿提出力学三大宣言的基础,不仅如此,他还创立了实验和数学相结合的现代科学研究方法。所以说他是近代物理学的奠基人,是科学的斗士,是打开近代科学大门的人,是不足为过的。
1642年,伽利略逝世了,但另一位未来的科学诞生了,他就是未来的英国物理学家、数学家、天文学家、经典物理学的创始人牛顿。
1661年,18岁的牛顿进入剑桥大学,有机会学到欧几里德的《几何原本》。后来他按照欧几里德的《几何原本》,撰写出他的辉煌之作《自然哲学的数学原理》。1664年,牛顿成为他老师巴罗的助手,1665年伦敦流行瘟疫,牛顿不得不回到家乡。表面上看来,牛顿隐居于穷乡僻壤的田舍山村之中,但是在他的头脑中却掀起科学革命的巨浪。在家乡的一年半时间里,是牛顿一生中创造性得到充分发挥的时期,也是近代科学史上数学、光学、力学的“黄金时代”。他发明了微积分,提出了着名的“万有引力”,他还通过三棱镜把光分解成7种颜色的单色光,从而奠定了现代光学的理论基础。
1666年,牛顿制成了能够放大40多倍的反射望远镜。1671年,他向皇家学会正式提交关于反射望远镜问题的论文;第二年,他又向皇家学会提交《光与色的新理论》。这些光学论文是牛顿显示自己科学才能并把它们公诸于世的第一批科学成果。牛顿在物理学方面,除了取得力学、热学、光学等多方面的成就外,更主要的是他还是经典物理学的开创者。他在伽利略等人工作的基础上,进行了深入的研究,总结出了三大定律,创立了经典力学体系:
牛顿第一定律:
任何物体在受到外力作用而被迫改变自己的状态之前,将保持静止或匀速直线运动状态。
(这就我们今天学习的惯性定律的最初表达)
牛顿第二定律:
动量的改变与所加的力成正比,其方向沿着该作用力的作用方向
(该定律我们将在高中一年级学到牛顿第二定律“力是使物体产生加速度的原因”的最初表达)
牛顿第三定律:
作用力与反作用力大小相等、方向相反。换句话说,两个物体间的相互作用力大小相等、方向相反。
(该定律我们目前初中阶段已经学过,只是没有以定律形式呈现)
牛顿关于物体运动的这三条定律是我们认识一切力学现象的依据,也是整个经典力学的基础。
关于牛顿发现万有引力定律,广泛流传着“苹果落地”的故事,其实这不过是故事而已。即使此事确实发生过,也不应过分夸大这件事本身的意义,只是我们要从这个故事中有所启发,要留心观察自己身边发生的每一个现象。如果说牛顿由于看到苹果落地就发现了万有引力定律,那就历史过于简单化(不过西方一直流传着这个说法,并且有“上帝说:让牛顿去做吧”的普遍说法,足见牛顿当时在科学界的威望)。站在历史的高度客观评价,在对万有引力定律的发现中做出贡献的科学巨人之中,要首推刻卜勒和伽利略。牛顿不过是集大成者,并解决了别人未能解决的问题,走完了最后、最高的一步罢了。德国着名的哲学家黑格尔说过:“被德国人饿死的刻卜勒是现代天体力学的真正奠基者;而牛顿的万有引力定律已经包含在刻卜勒的所有三个定律之中,在第三定律中甚至明显表示出来了。”难怪他在谈到他在自然科学领域的成就时说过这样的谦逊的言辞“就象一个在沙滩上玩耍的小孩拾到几个贝壳而高兴不已”、“我的一切成就都是因为站在巨人肩膀上的缘故”。总之,万有引力定律的诞生,对当时的天体力学乃至于当代天体力学的研究,都提供了最重要的理论保障。
在经典力学创立和不断完善的过程中,人们开始意识到科学方法的重要性,特别是实验方法的重要性。历史上第一个探索新方法的是英国着名的哲学家培根,他在《新工具》一书中主张把经验和理性的职能统一起来,要获得科学知识,首先要进行实验,最后在实践中得出结论,另一位提出实验的科学家是伽利略,他认为真正的科学就是宇宙、自然界,人们必须通过实验去阅读这部“自然之书”。可以说,正是培根和伽利略站在实践和理论上的工作给科学指明了方向,使自然科学脱离了哲学而成为一门独立的学科。要知道雄辩术―――优雅的语言和争论的技巧,在自然科学领域中,是没有用处的,自然科学必须要通过实验事实来说话。事实也无不说明了这一点:后来的托里拆利、帕斯卡、波义尔、牛顿、托马斯.扬、梅曼等科学家的研究成果,都是建立在实验基础之上的。
到了18世纪,牛顿力学向着深度和广度两方面进军。一方面,通过人的努力,近代数学方法广泛用于力学,形成了“分析力学”,它甚至被看做是新的数学分支;另一方面,牛顿力学又与具体物性相结合,形成了“固体力学”、“弹性力学”、“流体力学”等许多力学分支,使力学达到了相当完美的地步。
可以说在伽利略和牛顿时代,力学已形成了严密、完整、系统的科学体系,成为物理学发展史上第一个“黄金时代”。正是由于力学的带动,物理学科已初具规模,并且在另一批科学家的努力下向着更深更广的领域进军。

G. 我国物理学家杨振宁有多伟大,有怎样的贡献

杨振宁先生身上有太多标签,但很多普通人认识他却是在2004年,也就是他82岁时和28岁的翁帆正式成为夫妻关系时。而这段忘年恋并没有得到太多人的祝福,尽管他们这么些年并没有追求世俗眼中的豪华生活,但一夫一妻、明媒正娶依然没能让两位有自由选择权利的自然人躲过一些喷子的口诛笔伐。毫不夸张的说,老夫少妻成为了杨振宁先生继“国籍变更”这件事之后引发的最大争议,那么,杨振宁先生到底对中国有什么贡献?而科学本身又是否有国界之别?

事实上,不管是科学家,还是科学本身,其实都有国界之别,正如杨振宁先生会放弃美籍再次成为一个真正的中国公民。一个国家变得越来越强,科学发展是根本,尤其是地球环境变差、不少现有资源日趋稀缺之后,毕竟寻找第二个地球有可能还要至少上百年、甚至更久的时间,尽管生活在当代的人们可以正常工作生活,但人类要长此以往的繁衍生息下去,却并不是力所能及的保护地球就可以。简单点说,人类想要不像其他在地球上灭绝的动物一样走向灭亡,唯一的办法只有自己有技术创造一个栖息基地,或者在地球之外的世界找到另一个适合生命居住的星球。正因为这是一项充满困难的挑战,所以才需要历代科学家们共同努力。试想一想,任何一项科研成果,最先可以享受到的人无一不是其所在国度的人们,为什么国家要花重金培养科研人才,其实就是“计深远”的真实体现。

H. 物理学的初步形成到现在的近代物理经过什么发展,各个时期的代表人物是谁

物理学概况及发展史
研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠网络全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。

发展史西方的先哲一般都认为宇宙万物由几个简单的基本元素构成;千姿百态的各种运动也只是这些元素的量和质的变化。这些先进思想和他们的严谨的思辨方式,为后世的自然科学所继承和发扬。但由于他们的观察比较粗糙,又缺乏严格的数学论证,不免带有不少的空想和臆测的成分。例如亚里士多德在所着的《物理学》中就认为大地或月下区域内的物体是由土、水、气、火四元素构成,它们在宇宙中的“天然位置”是土位于最底层(即地球或宇宙中心),其上顺次为水、气、火,任一物体的运动取决于该物体中占最大数量的元素,在该元素的天然位置的上下作直线运动;月球以上的天体则由截然不同的第五元素即由纯净的以太(ether,希腊文的原意是燃烧或发光)构成的,它们的天然运动是圆周运动。前一运动是有生有灭、永远变化的,后一运动则是无始无终、永远不变的。这样,天、地及其运动之间就存在不可逾越的鸿沟,这观点对后来的科学发展起了负面作用。在中国,以物理为书名的,见之于三国、西晋时代会稽郡(今绍兴)处士杨泉的《物理论》,他认为气是“自然之体”,天是回旋运转的“元气”,万物是阴阳二气的“陶化、播流、气积”而成。不少中国的先哲认为气或元气是构成万物的原始物质,阴阳二气的消长是事物运动变化的原因。也有将“道”视为宇宙的本原及其普遍规律。这些和西方的观点颇多相似之处。也都认为天、地遵循不同的运动规律,如《淮南子·天文训》就说:“道始于虚霩,虚霩生宇宙,宇宙生气,气有涯垠,清阳者薄靡而为天,重浊者凝滞而为地。”清者上浮,浊者下沉,形成天地之别。

经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。

伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出着名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。

法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问:你把上帝放在什么地位?无神论者拉普拉斯则直率地回答:我不需要这个假设。

拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世纪,着名物理学家如法拉第、麦克斯韦、开尔文等都对以太论坚信不疑。另一方面,利用干涉仪内干涉条纹的移动,可以精确地测定长度、速度、曲率的极微细的变化;利用棱镜和衍射光栅产生的光谱,可以确定地上和天上的物质的成分及原子内部的变化。因此这些光学仪器已成为物理学、分析化学、物理化学和天体物理学中的重要实验手段。

蒸汽机的发明推动了热学的发展,18世纪60年代在J.瓦特改进蒸汽机的同时,他的挚友J.布莱克区分了温度和热量,建立了比热容和潜热概念,发展了量温学和量热学,所形成的热质说和热质守恒概念统治了80多年。在此期间,尽管发现了气体定律,度量了不同物质的比热容和各类潜热,但对蒸汽机的改进帮助不大,蒸汽机始终以很低的效率运行。1755年法国科学院坚定地否决了永动机。1807年T.杨以“能”代替莱布尼兹的“活力”,1826年J.V.彭赛列创造了“功”这个词。1798年和1799年,朗福德和H.戴维分析了摩擦生热,向热质说挑战;J.P.焦耳从19世纪40年代起到1878年,花了近40年时间,用电热和机械功等各种方法精确地测定了热功当量;生理学家J.R.迈尔和H.von亥姆霍兹,更从机械能、电能、化学能、生物能和热的转换,全面地说明能量既不能产生也不会消失,确立了热力学第一定律即能量守恒定律。在此前后,1824年,S.卡诺根据他对蒸汽机效率的调查,据热质说推导出理想热机效率由热源和冷却源的温度确定的定律。文章发表后并未引起注意。后经R.克劳修斯和开尔文分别提出两种表述后,才确认为热力学第二定律。克劳修斯还引入新的态函数熵;以后,焓、亥姆霍兹函数、吉布斯函数等态函数相继引入,开创了物理化学中的重要分支——热化学。热力学指明了发明新热机、提高热机效率等的方向,开创了热工学;而且在物理学、化学、机械工程、化学工程、冶金学等方面也有广泛的指向和推动作用。这些使物理化学开创人之一W.[[奥斯特瓦尔德]]曾一度否认原子和分子的存在,而宣扬“唯能论”,视能量为世界的最终存在。但另一方面,J.C.麦克斯韦的分子速度分布率(见麦克斯韦分布)和L.玻耳兹曼的[[能量均分定理]]把热学和力学综合起来,并将概率规律引入物理学,用以研究大量分子的运动,创建了气体分子动力论(现称气体动理论),确立了气体的压强、内能、比热容等的统计性质,得到了与热力学协调一致的结论。玻耳兹曼还进一步认为热力学第二定律是统计规律,把熵同状态的概率联系起来,建立了统计热力学。任何实际物理现象都不可避免地涉及能量的转换和热量的传递,热力学定律就成为综合一切物理现象的基本规律。经过20世纪的物理学革命,这些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和无序乃至涨落和混沌等概念,已经从有关的自然科学分支中移植到社会科学中。

在19世纪20年代以前,电和磁始终认为是两种不同的物质,因此,尽管1600年W.吉伯发表《论磁性》,对磁和地磁现象有较深入的分析,1747年B.富兰克林提出电的单流质理论,阐明了正电和负电,但电学和磁学的发展是缓慢的,1800年A.伏打发明伏打电堆,人类才有能长期供电的电源,电开始用于通信;但要使用一个电弧灯,就需联接2千个伏打电池,所以电的应用并不普及。1920年H.C.奥斯特的电流磁效应实验,开始了电和磁的综合,电磁学就迅猛发展,几个月内,通过实验A.-M.安培建立平行电流间的安培定律,并提出磁分子学说,J.-B.毕奥和F.萨伐尔建立载流导线对磁极的作用力(后称毕-萨-拉定律),阿拉戈发明电磁铁并发现磁阻尼效应,这些成就奠定了电磁学的基础。1831年M.法拉第发现电磁感应现象,磁的变化在闭合回路中产生了电流,完成了电和磁的综合,并使人类获得新的电源。1867年W.von西门子发明自激发电机,又用变压器完成长距离输电,这些基于电磁感应的设备,改变了世界面貌,创建了新的学科——电工学和电机工程。法拉第还把场的概念引入电磁学;1864年麦克斯韦进一步把场的概念数学化,提出位移电流和有旋电场等假设,建立了麦克斯韦方程组,完善了电磁理论,并预言了存在以光速传播的电磁波。但他的成就并没有即时被理解,直到H.R.赫兹完成这组方程的微分形式,并用实验证明麦克斯韦预言的电磁波,具有光波的传播速度和反射、折射干涉、衍射、偏振等一切性质,从而完成了电磁学和光学的综合,并使人类掌握了最快速的传递各种信息的工具,开创了电子学这门新学科。

直到19世纪后半叶,电荷的本质是什么,仍没有搞清楚,盛极一时的以太论,认为电荷不过是以太海洋中的涡元。H.A.洛伦兹首先把光的电磁理论与物质的分子论结合起来,认为分子是带电的谐振子,1892年起,他陆续发表“电子论”的文章,认为1859年J.普吕克尔发现的阴极射线就是电子束;1895年提出洛伦兹力公式,它和麦克斯韦方程相结合,构成了经典电动力学的基础;并用电子论解释了正常色散、反常色散(见光的色散)和塞曼效应。1897年J.J.汤姆孙对不同稀薄气体、不同材料电极制成的阴极射线管施加电场和磁场,精确测定构成阴极射线的粒子有同一的荷质比,为电子论提供了确切的实验根据。电子就成了最先发现的亚原子粒子。1895年W.K.伦琴发现X射线,延伸了电磁波谱,它对物质的强穿透力,使它很快就成为诊断疾病和发现金属内部缺陷的工具。1896年A.-H.贝可勒尔发现铀的放射性,1898年居里夫妇发现了放射性更强的新元素——钋和镭,但这些发现一时尚未引起物理学界的广泛注意。

20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。

1905年A.爱因斯坦为了解决电动力学应用于动体的不对称(后称为电动力学与伽利略相对性原理的不协调),创建了狭义相对论,即适用于一切惯性参考系的相对论。他从真空光速不变性出发,即在一切惯性系中,运动光源所射出的光的速度都是同一值,推出了同时的相对性和动系中尺缩、钟慢的结论,完满地解释了洛伦兹为说明迈克耳孙-莫雷实验提出的洛伦兹变换公式,从而完成了力学和电动力学的综合。另一方面,狭义相对论还否定了绝对的空间和时间,把时间和空间结合起来,提出统一的相对的时空观构成了四度时空;并彻底否定以太的存在,从根本上动摇了经典力学和经典电磁学的哲学基础,而把伽利略的相对性原理提高到新的阶段,适用于一切动体的力学和电磁学现象。但在动体或动系的速度远小于光速时,相对论力学就和经典力学相一致了。经典力学中的质量、能量和动量在相对论中也有新的定义,所导出的质能关系为核能的释放和利用提供了理论准备。1915年,爱因斯坦又创建广义相对论,把相对论推广到非惯性系,认为引力场同具有相当加速度的非惯性系在物理上是完全等价的,而且在引力场中时空是弯曲的,其曲率取决于引力场的强度,革新了宇宙空间都是平直的欧几里得空间的旧概念。但对于范围和强度都不很大的引力场如地球引力场,可以完全不考虑空间的曲率,而对引力场较强的空间如太阳等恒星的周围和范围很大的空间如整个可观测的宇宙空间,就必须考虑空间曲率。因此广义相对论解释了用牛顿引力理论不能解释的一些天文现象,如水星近日点反常进动、光线的引力偏析等。以广义相对论为基础的宇宙学已成为天文学的发展最快的一个分支。

另一方面,1900年M.普朗克提出了符合全波长范围的黑体辐射公式,并用能量量子化假设从理论上导出,首次提出物理量的不连续性。1905年爱因斯坦发表光量子假设,以光的波粒二象性,解释了光电效应;1906年又发表固体热容的量子理论;1913年N.玻尔(见玻尔父子)发表玻尔氢原子理论,用量子概念准确地地计算出氢原子光谱的巴耳末公式,并预言氢原子存在其他线光谱,后获证实。1918年玻尔又提出对应原理,建立了经典理论通向量子理论的桥梁;1924年L.V.德布罗意提出微观粒子具有波粒二象性的假设,预言电子束的衍射作用;1925年W.泡利发表泡利不相容原理,W.K.海森伯在M.玻恩和数学家E.P.约旦的帮助下创立矩阵力学,P.A.M.狄拉克提出非对易代数理论;1926年E.薛定谔根据波粒二象性发表波动力学的一系列论文,建立了波函数,并证明波动力学和矩阵力学是等价的,遂即统称为量子力学。同年6月玻恩提出了波函数的统计解释,表明单个粒子所遵循的是统计性规律而非经典的确定性规律;1927年海森伯发表不确定性关系;1928年发表相对论电子波动方程,奠定了相对论性量子理论的基础。由于一切微观粒子的运动都遵循量子力学规律,因此它成了研究粒子物理学、原子核物理学、原子物理学、分子物理学和固体物理学的理论基础,也是研究分子结构的重要手段,从而发展了量子化学这个化学新分支。

差不多同时,研究由大量粒子组成的粒子系统的量子统计法也发展起来了,包括1924年建立的玻色-爱因斯坦分布和1926年建立的费米-狄拉克分布,它们分别适应于自旋为整数和半整数的粒子系统。稍后,量子场论也逐渐发展起来了。1927年,狄拉克首先提出将电磁场作为一个具有无穷维自由度的系统进行量子化的方案,以处理原子中光的自发辐射和吸收问题。1929年海森伯和泡利建立了量子场论的普遍形式,奠定了量子电动力学的基础。通过重正化解决了发散困难,并计算各阶的辐射修正,所得的电子磁矩数值与实验值只相差2.5×10-10,其准确度在物理学中是空前的。量子场论还正向统一场论的方向发展,即把电磁相互作用、弱相互作用、强相互作用和引力相互作用统一在一个规范理论中,已取得若干成就的有电弱统一理论、量子色动力学和大统一理论等。

物理学实验与理论相互推进,并广泛应用于各部门,成为技术革命的重要动力,也是20世纪物理学的一个显着特征。其中开展得最迅速的领域则是原子核物理学和粒子物理学。1905年E.卢瑟福等发表元素的嬗变理论说明放射性元素因放射a和β粒子转变为另一元素,打破元素万古不变的旧观念;1911年卢瑟福又利用a粒子的大角度散射,确立了原子核的概念;1919年,卢瑟福用a粒子实现人工核反应。鉴于天然核反应不受外界条件的控制,当时人工核反应所消耗的能量又远大于所获得的核能,因此卢瑟福曾断言核能的利用是不可能的。1932年2月,J.乍得威克在约里奥·居里夫妇(1932年1月)和W.博特的实验基础上发现了中子,既解决构成原子核的一个基本粒子(和质子并称为核子),又因它对原子核只有引力而无库仑斥力,中子特别是慢中子成为诱发核反应、产生人工放射性核素的重要工具。1938年发现核裂变反应,1942年建成第一座裂变反应堆,完成裂变链式反应,1945年爆炸了第一颗原子弹,1954年建成了第一个原子能发电站,至今核裂变能已成为重要的能源。物理学家还从核聚变方向探索新能源:1938年H.A.贝特提出碳氮循环假说以氢聚变解释太阳的能源,成为分析太阳内部结构和恒星演化的重要理论依据;1952年爆炸了第一颗氢弹。许多国家都在惯性约束聚变和磁约束聚变等不同方面,探索自控核聚变反应,以解决日趋匮乏的能源问题。

对基本粒子的研究,最初是和研究原子和原子核结构在一起的,先后发现了电子、质子和中子。1931年泡利为了解释β衰变的能量守恒,提出中微子假设,于1956年证实。1932年C.D.安德森发现第一个反粒子即正电子,证实了狄拉克于1928年作出的一切粒子都存在反粒子的预言。在研究核内部结构时,发现核子间普遍存在强相互作用,以克服质子间的电磁相互作用,还了解核内存在数值比电磁作用小的弱相互作用,它是引起β衰变的主要作用。1934年汤川秀树用介子交换的假设解释强相互作用,但当时所用的粒子加速器的能量不足以产生介子,因此要在宇宙射线中寻找。1937年C.D.安德森在宇宙线内果然找到了一种质量介乎电子和质子间的粒子(后称μ子),一度被认为介子,但以后发现它并无强作用。1947年C.F.鲍威尔在高山顶上利用核乳胶发现π介子。从50年代起,各国都把高频、微波和自动控制技术引入加速器,制成大型高能加速器及对撞机等,成为粒子物理学的主要实验手段,发现了几百种粒子:将参与电磁、强、弱相互作用的粒子称为强子,如核子、介子和质量超过核子的重子;只参与电磁和弱相互作用的粒子如电子、μ子、τ子称轻子,并开始按对称性分类。1955年发现当时称为θ介子和τ介子的两种粒子,它们的质量、寿命相同应属一种粒子,但在弱相互作用下却有两种不同衰变方式,一种衰变成偶宇称,一种为奇宇称,究竟是一种或两种粒子,被称为θ-τ之谜。李政道和杨振宁仔细检查了以往的弱作用实验,确认这些实验并未证实弱作用中宇称守恒,从而以弱作用中宇称不守恒,确定θ和τ是一种粒子,合称K粒子。这是首次发现的对称性破缺。对粒子间相互作用的研究还促进了量子电动力学的发展。60年代中期起,进一步研究强子结构,提出带色的夸克假设,并用对称性及其破缺来分析夸克和粒子的各种性质及各种相互作用;建立了电弱统一理论和量子色动力学,并正在探索将电磁、弱、强三种相互作用统一起来的大统一理论。

此外,基于19世纪末热电子发射现象,1906年发明了具有放大作用的三极电子管,各种电子管纷纷出现,并和基于阴极射线的摄像管相结合,使电子工业,电子技术和电子学都迅速发展。1912年M.von劳厄发现X射线通过晶体时的衍射现象,后布拉格父子发展了研究固体的X射线衍射技术,在发现电子和离子的衍射现象后,鉴于它们的波长可以较X射线更短,发展了各种电子显微镜,其中扫描透射电镜的分辨本领达到3,可以观察到轻元素支持膜上的重原子,这些都成为研究固体结构及其表面状态的重要实验工具。在引入量子理论后固体物理学及所属的表面物理学迅速开展起来了。在固体的能带理论指导下,对半导体的研究取得很大成功,1947年制成了具有放大作用的晶体三极管,以后又发明其他类型晶体管和集成电路等半导体器件,使电子设备小型化,促进了电子计算机的发展,并开创了半导体物理学新学科。此外,以爱因斯坦的受激辐射理论为基础,发展了激光技术,由于激光的高定向性、高单色性、高相干性和高亮度,得到了广泛的应用;在低温物理学方面,H.卡默林-昂内斯于1906和1908年相继液化了氢气和氦气,1911年发现金属在温度4K左右时的超导电性,以后超导物质有所增加,超导温度也渐提高。现已证实,超导转变温度可提高到100余开,并已开始应用于超导加速器等。

学科特点物理学是实验科学,“实践是真理的唯一标准”,物理学也同样遵循这一标准。一切假说都必须以实验为基础,必须经受住实验的验证。但物理学也是思辨性很强的科学,从诞生之日起就和哲学建立了不解之缘。无论是伽利略的相对性原理、牛顿运动定律、动量和能量守恒定律、麦克斯韦方程乃至相对论、量子力学,无不带有强烈的、科学的思辨性。有些科学家例如在19世纪中主编《物理学与化学》杂志的J.C.波根多夫曾经想把思辨性逐出物理学,先后两次以具有思辨性内容为由,拒绝刊登迈尔和亥姆霍兹的论能量守恒的文章,终为后世所诟病。要发现隐藏在实验事实后面的规律,需要深刻的洞察力和丰富的想象力。多少物理学家关注θ-τ之谜,唯有华裔美国物理学家李政道和杨振宁,经过缜密的思辨,检查大量文献,发现谜后隐藏着未经实验鉴定的弱相互作用的宇称守恒的假设。而从物理学发展史来看,每一次大综合都促使物理学本身和有关学科的很大发展,而每一次综合既以建立在大量精确的观察、实验事实为基础,也有深刻的思辨内容。因此一般的物理工作者和物理教师,为了更好地应用和传授物理知识,也应从物理学的整个体系出发,理解其中的重要概念和规律。

应用物理学是广泛应用于生产各部门的一门科学,有人曾经说过,优秀的工程师应是一位好物理学家。物理学某些方面的发展,确实是由生产和生活的需要推动的。在前几个世纪中,卡诺因提高蒸汽机的效率而发现热力学第二定律,阿贝为了改进显微镜而建立光学系统理论,开尔文为了更有效地使用大西洋电缆发明了许多灵敏电学仪器;在20世纪内,核物理学、电子学和半导体物理、等离子体物理乃至超声学、水声学、建筑声学、噪声研究等的迅速发展,显然和生产、生活的需要有关。因此,大力开展应用物理学的研究是十分必要的。另一方面,许多推动社会进步,大大促进生产的物理学成就却肇始于基本理论的探求,例如:法拉第从电的磁效应得到启发而研究磁的电效应,促进电的时代的诞生;麦克斯韦为了完善电磁场理论,预言了电磁波,带来了电子学世纪;X射线、放射性乃至电子、中子的发现,都来自对物质的基本结构的研究。从重视知识、重视人才考虑,尤应注重基础理论的研究。因此为使科学技术达到世界前列,基础理论研究是绝不能忽视的。

展望21世纪的前夕,科学家将从本学科出发考虑百年前景。物理学是否将如前两三个世纪那样,处于领先地位,会有一番争议,但不会再有一位科学家像开尔文那样,断言物理学已接近发展的终端了。能源和矿藏的日渐匮乏,环境的日渐恶化,向物理学提出解决新能源、新的材料加工、新的测试手段的物理原理和技术。对粒子的深层次探索,解决物质的最基本的结构和相互作用,将为人类提供新的认识和改造世界的手段,这需要有新的粒子加速原理,更高能量的加速器和更灵敏、更可靠的探测器。实现受控热核聚变,需要综合等离子体物理、激光物理、超导物理、表面物理、中子物理等方面知识,以解决有关的一系列理论技术问题。总之,随着新的技术革命的深入发展,物理学也将无限延伸。

I. 我国古代物理学家作出的物理贡献

墨子,他是物理学家,毕竟中国古代没有分门别类的科学系统和实验体系,但墨家靠观察发现小孔成像原理,这是非常进步了。

阅读全文

与用物理学如何表示中国相关的资料

热点内容
巴基斯坦和中国的关系为什么这么好 浏览:836
伊朗和美国为什么有仇 浏览:154
为什么印尼人喜欢喷香水 浏览:130
印度歼10怎么样 浏览:661
越南马皮凉在越南哪个位置 浏览:819
伊朗女人戴什么手表 浏览:980
买越南媳妇多少人民币 浏览:398
去伊朗旅游带多少钱 浏览:10
想陪你很久很久意大利语怎么说 浏览:777
英国人怎么评价约翰 浏览:902
印度订不到酒店怎么办 浏览:913
传说对决印尼服怎么进 浏览:666
关于英国论文怎么写 浏览:391
意大利有哪些品牌的车 浏览:568
伊朗对西班牙怎么样 浏览:885
1元换多少越南盾合适 浏览:161
越南610是什么金 浏览:266
印尼什么时发生地震 浏览:24
印尼红龙鱼15公分怎么看 浏览:554
中国公元前900年什么时期 浏览:594