㈠ 核电给我们的生活带来什么影响了解
核电不但非常经济,而且对环境的影响最小
“与火力发电站和水力发电站相比,核电站具有明显的优势。”朱书堂博士介绍说。
首先,从环境方面,核电对环境影响最小,它既能满足能源需求,同时又是抑制日益增长的空气污染和温室气体排放问题的有效解决办法之一。
科学家曾经对百万吨级的煤电和核电站每年向大气排放的有害物质作过比较,煤电排放二氧化碳约为700吨,二氧化硫约为6万吨,氮氧化合物约为9万吨,火渣及飞灰约为80万吨。而核电生产以上的物质都是零排放。
另外,从安全性上来说,通过世界核能领域持续不断的努力,核电站安全性已经得到了极大提高。目前在役运行的第二代压水堆核电站,发生大规模放射性泄漏事故的概率已经降到了百万分之一。而我国引进的西屋公司AP1000第三代先进压水堆核电站,由于采用非能动安全技术,大量放射性泄漏概率降到了约五千万分之一。朱书堂博士介绍说。
最重要的是,核电还非常经济。虽然,从前期投资上来看,核电投资是煤电的2.5倍,但是,对于建成以后,1公斤的铀全部裂变所释放出的裂变能,大约相当于2400吨煤或2000吨的石油燃烧所释放出的能量。
“一座百万千瓦的火电站一年需要250万吨的标准煤,而核电站只需要几十吨的胡橘并低浓缩铀原料就行了。”朱书堂博士介绍说。另外,核电站不需要煤电那样占地巨大的露天储煤仓库和堆积废渣的场地,减少了占地面积,降低了对环境的影响,节省了开支。
人们对核电的一些误解,专家一一进行了解释
据统计,人类所受到的辐射照射有75%来自自然界,20%来自医疗诊断,只裤迹有0.25%来自核电,核电对于人类辐射环境的影响微乎其微。举个例子来说,北京至欧洲乘飞机往返一次受到的辐射为0.02毫希,胸肺透视一次为0.2毫希,而在核电站工作一年仅为0.01毫希。
如果发生强烈地震,核电站的安全如何保证?朱书堂博士介绍说,在《核电站厂址安全规定》及相关的细则中,有严格的规定。核电站的选址附近范围应该不存在能动断层,区域地壳相对稳定,不存在现代火山活动、诱发地震、断层错位地表、沙液化、湖涌等地震地质灾害。
对于一些专家对我国大力发展核电会造成原料铀的缺乏,朱书堂博士引用《科技导报》2007年第5期赵仁恺院士的文章数据说:中国的原料铀完全有能力保证6000万千瓦核电装机的需要。另外,虽然国际上俗称“黄饼”的铀原料的成交价格达到每磅80美元,但是和煤炭价格比起来还是便宜很多。
令人关注的是伍圆,发改委批准在内陆的湖北、湖南和江西建设3座核电站。其他内陆省份为了争取立项建设核电站,各项工作也在积极推进。
“一个核电站投资几百亿元,只要建在那儿,不管谁来投资,几百亿元投进去了,当地的经济肯定发展起来了。”朱书堂博士说。“为了避免我国核电站选址出现像前些年的水电、火电一窝蜂上马的情况,国家有关部门正在规范地方的核电选址。”
“到2020年4000万加1800万千瓦的核电装机容量对我国来说,不是多,而是少!仅占当时我国发电装机容量的4%-5%,远远低于美国、法国、俄罗斯、日本等核电大国,也低于世界平均水平!我国核电发展潜力巨大,前景广阔。”朱书堂博士最后说。
纯手打,谢谢。
㈡ 核能源对人们的生产生活所产生的作用是
主要是利用核能发电,减少化石能源的使用对大大档码气等环境带来的危害。
中国蠢掘正在加大能源结构调整力度。积极发展核电、风电、水电等清洁优质能源已刻不容缓。中滚哪国能源结构仍以煤炭为主体,清洁优质能源的比重偏低。
㈢ 核能在人类生存中有哪些重要作用
核动力
维基网络,自由的网络全书
本文介绍的是核反应获得的能量 (Nuclear power)。关于原子核释放的能量 (Nuclear energy),详见“核能”。
汉汉▼
核能发电的燃料产业链
这是一座位于法国的核能发电厂。水蒸气正在从双曲面形状的冷却塔排出。核反应堆位于圆桶状的安全壳建筑物内
核动力(英语:Nuclear power,也称原子能)是利用可控核反应来获取能量,从而得到动力、热量和电能。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机组。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。
因为核辐射问题和现在人类还只能控制核裂变,所以核能尚未得到所有国家、民众的认可,在大部分的国家暂时未有大规模的利用。利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美国)。同时,核能每年提供人类获得的所有能量中的15.7%。[1]
目录 [隐藏]
1 应用
2 历史
2.1 起源
2.2 早期
2.3 发展
3 反应堆的种类
3.1 当今的技术
3.2 工作原理
3.3 试验技术
4 核燃料的循环
4.1 核燃料的来源
4.2 固体废料
4.3 再处理
5 经济
5.1 建造所需资金
5.2 补贴
5.3 其它
6 对核能的担心
6.1 事故或袭击
6.2 对人类健康的影响
6.3 核武器扩散
7 环境影响
7.1 空气污染
7.2 废热
8 原子能机构团体名单
9 脚注
10 参考资料
11 参见
[编辑]应用
法国核电发电比例极高,图为法国核电厂位置。
美国核电位置
美国每年产生的核能居全世界首位,美国人消耗的电能中有20%来自于核能。如果按核能占总电能的百分比来看,法国则为全球第一。2006年的调查显示,核能满足了78%的法国电能需求。[2][3] 欧盟需要的30%的电能来自核反应。[4]各国的核能政策均各有不同。
核能是一种储量充足并被广泛应用的能量来源,而且如果用它取代化石燃料来发电的话,温室效应也会减轻。国际间正在进行对于改善核能安全性的研究,科学家们同时还在研究可控核聚变和核能的更多用途,比如说制氢(氢能也是一种被广泛提倡的清洁能源),海水淡化和大面积供热。1979年的三哩岛核泄漏事故和1986年的切尔诺贝利核事故使美国放缓了建造核能发电厂的步伐。后来,核能在经济与环境两方面的益处使联邦政府又开始重新考虑它。公众也对核能很感兴趣,不断飙升的油价,核能发电厂安全性的提高和符合京都议定书规定的低温室气体排放量使一些有影响的环境保护论者开始注意核能。有一些核反应堆已处于建造当中,几种新型核反应堆也在计划之中。
关于核能的利用一直存在着争议,因为那些放射性核废料会被无限期保存起来,这就有可能造成泄漏或爆炸,有些国家可能借应用核能的名义来大量制造核武器。核能的拥护者说这些风险都是很小的,并且应用了更先进的科技的新型核反应堆会将风险进一步降低。他们还指出,与其它化石燃料发电厂相比,核能发电厂的安全记录反而更好,核能产生的放射性废料比燃烧煤产生的还少,并且核能可以持续获得。而核能的反对者,包括了大部分主要的环境保护组织,认为核能是一种不经济,不合理且危险的能源(尤其是与可再生能源相比),而且他们对新技术能否减低成本和风险也存在着争议。有些人担心朝鲜及伊朗可能正在以民用核能的名义研制核武器。朝鲜已经承认拥有核武器,而伊朗则对此否认。
[编辑]历史
[编辑]起源
第一个成功的核裂变实验装置在1938年的柏林被德国科学家奥托·哈恩,莉泽·迈特纳和弗瑞兹·斯特拉斯曼制成。
在第二次世界大战中,一些国家致力于研究核能的利用,它们首先研究的是核反应堆。1942年12月2日,恩里科·费米在芝加哥大学建成了第一个完全自主的链式核反应堆,在他的研究基础上建立的反应堆被用来制造轰炸了长崎的原子弹“胖子”中的钚。在这个时候,一些国家也在研究核能,它们的研究重点是核武器,但同时也进行民用核能的研究。
1951年12月20日人类首次用核反应堆产生出了电能,这个核反应堆位于爱达荷州Arco的EBR-I试验增殖反应堆,它最初向外输出的功率为100 kW。
1952年,帕雷委员会(“总统的材料政策委员会”的简称)向当时的美国总统哈利·S·杜鲁门提交了一份报告,这份报告认为核能的前景“相当悲观”,它建议应该让科学家们研究太阳能。[5]
1953年12月,美国总统德怀特·艾森豪威尔发表的名为“和平需要原子”的演说,这使美国政府开始资助一系列国际间的核能研究。
[编辑]早期
这是位于宾夕法尼亚州码头市的“码头市核电站”,它是美国第一个投入商业运营的核反应堆,于1957年开始工作。
1954年6月27日,世界上第一个为电网提供电力的核电站在苏联的欧伯宁斯克开始运行。[6] 这个反应堆使用了石墨来控制核反应并用水来冷却,功率为5兆瓦。全世界第一个投入商业运营的核反应堆是位于英格兰设菲尔德的Calder Hall,它于1956年开始运行。它有一个Magnox型反应堆,最初的输出功率为 50兆瓦,后来提高到了200兆瓦。[7] 宾夕法尼亚州码头市的一个压水型反应堆是美国第一个投入商业运营的反应堆。
1954年,美国原子能委员会(美国核管理委员会的前身)的主席说,人们谈到核能时经常会提到,如果广泛应用核能,电力在将来会变得很便宜,实际上这是错误的。但是人们的这种想法已经让美国决定在2000年之前建造1000个核反应堆。[8]
在1955年联合国的“第一次日内瓦会议”中,世界上聚集了最多的科学家来一起探索核能这个新领域。1957年,欧洲原子能共同体(EURATOM)与欧洲经济共同体(即现在的欧盟)一同成立。同年成立的还有国际原子能机构(IAEA)。
[编辑]发展
核反应堆的功率提升迅速,从1960年代的不到1GW(吉瓦,GigaWatt)猛长至1970年代的100GW,1980年代又升到了300GW。1980年以后,核反应堆的功率的提升变得不那么迅速了,到2005年,功率只上升到了366GW,大部分来自于中国的核能建设。[9]
这是华盛顿公共供电系统,其中的3号和5号核电站在未完工时便遭废弃。
在1970年代和1980年代之间,建造核电站所需的巨额费用(来自政府要求的提高和一些反对者的诉讼所要求的经常性改进)和下降中的化石燃料价格使建造当中的核电站变得不那么吸引人。
在20世纪后半叶,一些反对核能的运动开始兴起,它们担心的是核事故和核辐射,还反对生产,运输和储藏核废料。1979年的三哩岛核泄漏事故和1986年的切尔诺贝利核事故成为了许多国家停止建造新核电站的关键理由。澳大利亚于1978年,瑞典于1980年,意大利于1987年都对建造核电站的问题发动了全民公投,同时爱尔兰的核能反对者成功地阻止了在该处核能计划的实施。但布鲁金斯学会表示,美国政府没有批准新核电站的建造主要是由于经济原因,而非安全问题。[10]
[编辑]反应堆的种类
[编辑]当今的技术
核裂变发电机组
现今正在运营的核反应堆可依裂变的方式区分为两大类,各类中又可依控制裂变的手段区分为数个子类别:
核裂变反应堆通过受控制的核裂变来获取核能,所获核能以热量为形式从核燃料中释出。
现行核电站所用的全为核裂变反应堆,这也是本段的主述内容。核裂变反应堆的输出功率为可调。核裂变反应堆也可依世代分类,比如说第一、第二和第三代核反应堆。现在的标准核反应堆都为压水式核反应堆(PWR)。
快中子式核反应堆和热中子式核反应堆的区别会在稍后讲到。总体来说,快中子式反应堆产生的核废料较少,其核废料的半衰期也大大短于其它型式反应堆所产生的核废料,但这种反应堆很难建造,运营成本也高。快中子式反应堆也可以当作增殖型核反应堆,而热中子式核反应堆一般不能为此。
A. 压水反应堆 (PWR)
压水反应堆内炉
这种反应堆完全以高压水来冷却并使中子减速(即使在温度极高时也是这样)。大部分正在运行的反应堆都属于这一类。尽管在三哩岛出事的反应堆就是这一种,一般仍认为这类反应堆最为安全可靠。这是一种热中子式核反应堆。中国大陆秦山核电站一期工程、大亚湾核电站和台湾核三厂的反应堆为此型。
B. 沸水反应堆 (BWR)
这些反应堆也以轻水作为冷却剂和减速剂,但水压较前一种稍低。正因如此,在这种反应堆内部,水是可以沸腾的,所以这种反应堆的热效率较高,结构也更简单,而且可能更安全。其缺点为,沸水会升高水压,因此这些带有放射性的水可能突然泄漏出来,。这种反应堆也占了现在运行的反应堆的一大部分。这是一种热中子式核反应堆。台湾核一厂和核二厂两座发电厂的反应堆为此型。
C. 压重水式核反应堆 (PHWR)
这是由加拿大设计出来的一种反应堆,(也叫做CANDU),这种反应堆使用高压重水来进行冷却和减速。这种反应堆的核燃料不是装在单一压力舱中,而是装在几百个压力管道中。这种反应堆使用天然铀为核燃料,是一种热中子式核反应堆。这种反应堆可以在输出功率开到最大时添加核燃料,因此能高效利用核燃料(因为可作精确控制),并节省浓缩铀的成本;只是重水很贵。大部分压重水式反应堆都位于加拿大,有一些出售到阿根廷、中国、印度(未加入防止核武器扩散条约)、巴基斯坦(未加入防止核武器扩散条约)、罗马尼亚和南韩。印度也在它的第一次核试爆后运行了一些压重水式核反应堆(一般被称为“CANDU的变种”)。中国大陆秦山核电站三期工程的反应堆为此型。
D.石墨轻水型核反应堆(RBMK)
石墨轻水型核反应堆
这是一种苏联的设计,它在输出电力的同时还产生钚。这种反应堆用水来冷却并用石墨来减速。RBMK型与压重水型在某些方面具有相同之处,即可以在运行中补充核燃料,并且使用的都是压力管。但是与压重水型不同的是,这种反应堆不稳定,并且体积太大,无法装置在外罩安全壳的建筑物里,这点很危险。RBMK型还有一些很重大的安全缺陷,尽管其中一些在切尔诺贝利核事故后被改正了。一般认为RBMK型是最危险的核反应堆型号之一。切尔诺贝利核电站拥有四台RBMK型反应堆。
E. 气冷式反应堆 (GCR) 和 高级气冷式反应堆 (AGCR)
这种反应堆使用石墨作为减速剂,并用二氧化碳作为冷却剂。其工作温度较压水式反应堆更高,因此热效率也更高。一部分正在运行的反应堆属于这一类,大部分位于英国。老式的核电站(也就是Magnox式)已经或即将关闭。但高级气冷式核反应堆还会继续运行10至20年。这是一种热中子式核反应堆。关闭这种核电站的费用很高,因其反应炉核心很大。
F. 液态金属式快速增殖核反应堆 (LMFBR)
这种反应堆使用液态金属作为冷却剂,而完全不用减速剂,并且在发电的同时生产出比消耗量更多的核燃料。这种反应堆在效率上很接近压水式反应堆,而且工作压力不需太高,因为液态金属即使在极高温下也不需加压。法国的超级凤凰核电站和美国的费米-I核电站用的都是这种反应堆。1995年,日本的“文殊”核电站发生液态钠泄漏,预计将会在2008年重新开始运行。这三个核电站都用到了液态钠。这是一种快速中子式反应堆而不是热中子式反应堆。液态金属式反应堆分为两种:
液态铅式反应堆
这种反应堆使用液态铅来作为冷却剂,铅不但是隔绝辐射的绝佳材料,还能承受很高的工作温度。还有,铅几乎不吸收中子,所以在冷却过程中损失的中子较少,冷却剂也不会变成带放射性。与钠不同的是,铅是惰性元素,所以发生事故的几率也较小,但是,应用如此大量的铅就不得不考虑毒性问题,而且清理起来也很麻烦。这种反应堆经常用的是铅铋共熔合金。在这种情况下,铋会产生一些小的放射性问题,因为它会吸收少量中子,而且也比铅更容易变得带放射性。
液态钠式反应堆
大部分液态金属式反应堆都属于这一种。钠很容易获得,而且还能防止腐蚀。但是,钠遇水即剧烈爆炸,所以使用时一定要小心。虽然这样,处理钠爆炸并不比处理压水式核反应堆中超高温轻水的泄漏麻烦到哪里去。
放射性同位素温差发电机通过被动的衰变来获取热量。
一些放射性同位素温差发电机被用来驱动太空探测器(比如卡西尼-惠更斯号),苏联的一些灯塔,和某些心脏起搏器。这种发电机产生的热会随着时间逐渐减少,其热能通过温差电效应转换成电能。
[编辑]工作原理
一般核电站的关键部分是:
核燃料
反应炉燃料棒
中子减速剂
冷却剂
控制棒
反应炉压力槽
反应炉中心紧急冷却系统
反应堆保护系统
蒸汽发生器(沸水式反应堆中没有这个)
安全壳建筑
水泵
涡轮机
发电机
冷凝器
一般的热电厂都有燃料供应来产生热,比如说天然气,煤或石油。对于核电厂来说,它需要的热来自于核反应堆中的核裂变。当一个相当大的可裂变原子核(一般为铀-235或钚-239)被一个中子轰击时,它便分裂为两个或更多个部分,同时释放出能量和中子,这个过程就叫做核裂变。原子核释放出的中子会继续轰击其它原子核。当这个链式反应被控制的时候,它释放出的能量便可用来烧水,产生出的水蒸气会驱动涡轮机,从而产生电能。需要记住的是,核爆炸中发生的是“不受控制的”链式反应,而核反应堆中的裂变速度无法达到核爆炸所需要的速度,这是因为商业用核燃料的浓度还不够高。(参看浓缩铀)
链式反应被一些能够吸收或减慢中子的材料控制着。在以铀为核燃料的反应堆当中,中子需要被减慢速度,因为当慢速中子轰击铀-235原子核时是更容易发生裂变的。轻水反应堆使用普通水来减慢中子并进行冷却。当水的温度升高到一定程度时,它便达到了工作温度,此时它的密度会降低,因此没被它吸收的少量中子会被减得足够慢,然后去引发新的裂变。负反馈将裂变速度保持在一定水平。
[编辑]试验技术
一些产生核能的其他设计,比如说德国第IV号反应堆,是一些正在进行的研究项目的对象。它们在将来可能会投入实际应用。一些改进后的核反应堆使反应炉变得更干净,更安全和/或降低了散布核武器的风险。
超临界水冷式反应器 (SCWR)
超临界水冷式反应器将比气冷式反应堆更高的效率与压水式反应堆的安全性结合到了一起,它在技术上遇到的挑战可能比二者都大。在这种反应器中,水会被加热到临界点。超临界水冷式反应器与沸水式反应堆相似,但是超临界水冷式反应器中的水不会沸腾,因此它的热效率也就比沸水式反应堆高。这是一种超热中子反应堆。
整合式快中子反应堆
1980年代科学家建造,测试并评估了一个整合式快中子反应堆,后在1990年代由于克林顿政府的要求而被弃置,这是因为克林顿政府的政策是防止核武器扩散。这种反应堆会将用过的核燃料回收,因此它只产生一点核废料。本段结尾的链接是对于爱达荷州阿贡国家实验室的前总管Charles Till博士的采访,他介绍了整合式快中子反应堆并解释了它在安全性,效率,核废料和其它几个方面上的的优点。[11]
球床反应堆 —这种反应堆使用陶瓷球来包装住核燃料,所以它比较安全。绝大多数的这种反应堆使用氦作为冷却气体,氦不会爆炸,不会很容易地吸收中子而变得有放射性,也不会溶解能变得有放射性的物质。典型的设计拥有比轻水式反应堆的安全壳层数(一般为3层)更多层的安全壳(一般为7层)。一个它独有的特点是,它的燃料球实际上组成了反应炉的核心,而且可以一个一个地更换,因此这种反应堆更安全。核燃料的这种设计使重新处理它们变得很贵。
SSTAR 小型(Small)密封(Sealed)可运输式(Transportable)自主(Autonomous)反应堆(Reactor)在美国是首要研究项目之一,它是一种相当安全的增殖反应堆。
次临界反应堆的设计更安全,但是在建造技术和经济上还有一定困难。
钍反应堆
在特殊的反应堆中,钍-232可以转变为铀-233。在这种情况下,比铀的储量更丰富的钍就可以用来制造铀-233。铀-233相对于铀-235来说有一些优点,它产生的中子更多,并且产生更少的长半衰期超铀元素核废料。
高级重水反应堆 —下一代的压重水式核反应堆,使用重水来作为减速剂。印度的巴巴原子研究中心 (BARC)正在对此进行研究。
KAMINI —一种独特的反应堆,它使用铀-233来作为核燃料。由巴巴原子研究中心和甘地原子研究中心建造。
印度正在建造一台更大的快速增殖钍反应器,为的是利用钍来获取核能并控制它。
受人为控制的核聚变在理论上也可以提供核能,并且操纵过程也不像锕系元素那么麻烦,但是在技术上还有许多难题等待解决。科学家已经建造了几个核聚变反应堆,但是到目前为止,还没有一个反应堆输出的能量比输入的能量多。尽管科学家从1950年代就开始研究可控核聚变,但是一般认为2050年以前不会有商业性的核聚变反应堆投入应用。现在领导着可控核聚变研究的是ITER。
[编辑]核燃料的循环
主条目:核燃料循环
核燃料循环从铀的开采,提纯至被制成核燃料开始,(1)核燃料被送到核电站。在被使用完后,剩余的燃料被送到再处理工厂(2)或直接送到填埋场(3)。在再处理过程中,95%的剩余核燃料能够再被核电站利用。(4)
核燃料—一种紧密,不活泼,不能溶解的固体
核反应堆只是核燃料循环中的一部分。整个循环从核燃料的开采开始。一般来说,铀矿不是露天开采的条带矿,就是原地开采的过滤型矿。在任意一种情况下,铀矿石都会被提取出来,并被转为稳定且紧密的形式(例如黄铀饼),然后被送到处理工厂。在这里,黄铀饼会被转化为六氟化铀,之后会被提纯。在这时,包含了0.7%以上铀-235的提纯铀会被加工成各种形状大小的燃料棒。被送到核电站后,这些燃料棒会在反应堆中待上大约3年,在这3年中,它们会消耗自身包含的铀的3%,在这之后,它们会被送到乏燃料水池,在这里,核裂变中产生的一些半衰期短的同位素会衰变掉。在这里呆上大约5年后,这些核燃料的放射性会降低到安全范围之内,之后就会被装进干的储藏容器永久储藏,或被送到再处理工厂进行再处理。
[编辑]核燃料的来源
主条目:铀市场
铀是一种常见的化学元素,陆地上和海洋中的每个地方都存在着铀。它就跟锡一样常见,储量比金高500倍。大部分种类的岩石和土壤都包含着铀,尽管浓度极低。现在,比较经济的铀储藏地的铀浓度至少为0.1%。以现在的花费速度来算,地球上可被提取的铀还可用50年。在这种情况下,将铀的价格提高一倍会将核电站的运行成本提高5%。但是,如果将天然气的价格提高一倍,那么天然气的供应成本会提高60%。将煤的价格提高一倍会将煤的供应成本提高30%。
铀的提纯会产生出许多吨贫铀 (DU),它包含了铀-238和大多数铀-235。铀-238有几种商业上的应用,比如说飞机制造,辐射防护,制造子弹和装甲,因为它具有比铅更高的的密度。一些证据显示过度接触铀-238的人会得疾病,这些人包括坦克乘员和在有大量贫铀存在的地区居住的居民。
现在的轻水反应堆远远没有能充分利用核燃料,这造成了浪费。更有效的反应堆或再处理技术将会减少核废料的数量,并且能更好地利用资源。[12]
与现在使用铀-235(占天然铀的0.7%)的轻水反应堆不同的是,快速增殖反应堆使用的是铀-238(占天然铀的99.3%)。铀-238估计可供核电站使用50亿年。[13]增殖技术已经被应用在了几个反应堆中。[14]至2005年12月,唯一正在向外界提供能量的增殖反应堆是位于俄罗斯别洛雅尔斯克的BN-600。(BN-600的输出功率为600兆瓦,俄罗斯还计划在别洛雅尔斯克核电站建造另一个反应堆,BN-800)还有,日本的“文殊”反应堆也在准备重新起用(它从1995年起就被关闭了),中国和印度也在计划建造增殖反应堆。
由钍转化而得的铀-233也可以用做核裂变燃料。地球上钍的储量为铀的储量的三倍,而且理论上所有这些钍都可被用来进行增殖,这使钍的潜在市场大于铀的市场。[15]与用铀-238来制造钚不同的是,用钍来制造铀-233不需要快速增殖反应堆,它在常规增殖反应堆中的表现已经很令人满意了。
计划中的核聚变反应堆使用的核燃料是氘,一种氢的同位素,现在的设计也会用到锂。以现在人类消耗能量的速度来看,地球上可开采的锂还可以用3000年,海洋中的锂可用6000万年,如果核聚变反应堆只消耗氘的话,它们可以工作1500亿年。[16]相比之下,太阳只剩下了50亿年的寿命。 而地球的碳水化合物生物寿命,只剩下不到20亿年了。
[编辑]固体废料
现在的核电站产生的废料太多。一台大型核反应堆每年会产生3立方米(25-30吨)的核废料。[17]这些核废料中主要包含没有发生裂变的铀和大量锕系元素中的超铀元素(大部分是钚和锔)。3%的核废料是裂变产物。核废料中的长半衰期成分为锕系元素(铀,钚和锔),短半衰期成分为裂变产物。
核废料具有强放射性,并且需要特别小心地控制。刚从核反应堆出来的核废料可在不到一分钟的时间内使人致死。但是,核废料的放射性会随着时间减少。40年后,它的放射性与刚从反应堆出来时相比,已经减少了99.9%,尽管如此它的放射性还是很危险。[12]
核废料的储藏和处理是一个巨大的挑战。由于核废料具有放射性,它必须存放在具有辐射防护的水池中(乏燃料池),在这之后它一般会被送到干燥的地窖或防辐射的干燥容器中进行储藏,直到它的辐射量降低到可以进行进一步处理的程度。由于核燃料种类的不同,这个过程通常要持续几年到几十年的时间。美国大多数的核废料现在都在短期的储藏地点,人们正在讨论建造永久储藏地点。美国犹加山的地下储藏室被提议成为永久的储藏地点。
核废料的数量可以通过几种方法来减少,其中核燃料再处理效果最为显着。即使这样,剩余的核废料如果不包含锕系元素,还会持续300年保持强放射性,如果包含锕系元素,则会持续几千年保持强放射性。即使将核废料中的锕系元素全部除去,并使用快速增殖反应堆通过嬗变将一些半衰期长的非锕系元素也除去,核废料还是要在一百至几百年内与外界隔绝,所以这是个长期的问题。次临界反应堆和核聚变反应堆也可以减少核废料需要被储藏的时间。[18]由于科技在飞速地发展,处理核废料的最好方法是否为地下填埋已经出现了争议。现在的核废料在将来可能就是一种有用的资源。
核工业上使用的受污染的工作服,工具,净水树脂和一些正要关闭的核电站本身也都在产生一些低放射性的废料。在美国,美国核管理委员会已经几次尝试着允许低放射性废料被当作普通废物一样处理,比如进行填埋,回收等等。许多低放射性废料的辐射量非常小,它们只因为自己的使用历史而被当作了放射性废物。举例来说,根据美国核管理委员会的标准,咖啡也可以被视作低放射性废料。
在应用了核能的国家中,整个工业产生的有毒废料中只有不到1%是放射性废料,但是它们是极其有害的,除非经过衰变后,它们的辐射量变得更低,或者更理想的是,辐射完全消失。[12]总体来说,核能工业产生的废料比化石燃料工业产生的废料要少很多。燃烧煤的工厂产生的有毒和放射性的废料尤其多,因为煤中的有害的和放射性的物质在这里被集中起来了。
[编辑]再处理
再处理可以回收用过的核燃料中95%的铀和钚,并将它们转化为新的混合氧化物燃料。这也同时减少了核废料的长期放射性,因为经过再处理后,剩余核废料中主要就是半衰期短的裂变产物,并且它的体积也减少了90%。民用核燃料产生的废料的回收已经在英国,法国和(以前)俄罗斯大规模应用,中国也即将应用这项技术,印度也可能应用,日本应用此项技术的规模也在扩展中。伊朗已经宣布成功进行了核废料的再处理,这就完善了它的核燃料循环,但是同时也招致了美国和国际原子能机构的批评。[19]与其它国家不同的是,美国在一段时间前是禁止核废料再处理的;尽管这个政策已经被废除,但是现在美国大部分使用后的核燃料都仍然在被当作废料处理。[20]
㈣ 核能的后果是什么
问题一:利用核能有什么好处和坏处? 好处:1.效率高,少量能源就能产生巨大电能,节约资源。2.大大减少有害气体、温室气体的排放,保护环境,减少雾霾。坏处:对周围居民的生命是潜在威胁。
问题二:什么是核能?是由什么组成的?有没有坏处?为什么? 核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两睁旁枯三个中子。若这些中子除去消耗,至少有一个中子能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。
要用反应堆产生核能,需要解决以下4个问题:①为核裂变链式反应提供必要的条件,使之得以进行。②链式反应必须能由人通过一定装置进行控制。失去控制的裂变能不仅不能用于发电,还会酿成灾害。③裂变反应产生的能量要能从反应堆中安全取出。④裂变反应中产生的中子和放射性物质对人体危害很大,必须设法避免它们对核电站工作人员和附近居民的伤害。
优点:
1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2.核能发电不会产生加重地球温室效应的二氧化碳。
3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。
4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
缺点:
1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境Y,故核能电厂的热污染较严重。
3.核能电厂投资成本太大,电力公司的财务风险较高。
4.核能电厂较不适宜做尖峰、离峰之随载运转。
5.兴建核电厂较易引发政治歧见纷争。
6.核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。
问题三:核能泄露危害? 对人体的话,首先是皮癌,次之血液类病,再者失去免疫力,可能产生任何一种癌症。
此外,会造成基因突变、水体污染、生物污染等危及全人类
问题四:核能的危害 核废料(即烧过的核燃料)都具有高放射性,而且周期很长(半衰期为几万甚至几百万年)。目前还没有有效地处理方法,目启伍前都是深埋等待技术成熟。
问题五:核电的好处与坏处 核电的环保性。核电是清洁能源,对环境影响小.核能发电不像化石燃悉洞料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。核能发电不会产生加重地球温室效应的二氧化碳。
2消耗资源也少。核燃料能量密度比起化石燃料高上几百万倍。核能要比化学能大得多,所以核电站所消耗的核燃料比同样功率的火电厂所消耗的化石燃料要少得多。百万千瓦的发电机组,核电站一年仅需补充30吨核燃料而火电厂却要消耗300万吨原煤
3核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
4核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定等优点
弊
1热污染较严重。
核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境Y,故核能电厂的热污染较严重。
5拆除它却要花费数倍乃至十数倍于建造的费用。拆除核电站要将整座核电站用特殊的工具切割成一块一块的小砖头,然后一块一块地用特殊仪器检测,未发现含有过量核辐射的才可以运走。若发现其含有超量核辐射的则要按核废料处理
2核废料处置成本大 技术要求高。
核废料具有极强烈的放射性,能伤害人类和环境,而且其半衰期长达数千年、数万年甚至几十万年。所以如何安全、永久地处理核废料是科学家们一个重大的课题。安全、永久地处理核废料需要
首先要安全、永久地将核废料封闭在一个容器Y,并保证数万年内不露出放射性。科学家们为达到这个目的,曾经设想将核废料封在陶瓷容器Y面,或者封在厚厚的玻璃容器Y面。但科学实验证明,这些容器存入核废料在100年以内效果还是很理想。但100年以后,容器就经受不住放射线的猛烈轰击而发生爆裂,到那时,放射线就会散发到周围环境中,后果不堪设想。
其次,要寻找一处安全、永久存放核废料的地点。这个地点要求物理环境特别稳定,长久地不受水和空气的侵蚀,并能经受住地震、火山、爆炸的冲击。随着我国核电站数量的增加,但这些核电站在发电的同时也产生了大量的核废料。目前我国核电站每年产生150吨具有高度放射性的核废料,预计到2010年这些核废料的积存量将达到1000吨。
但中国仅有两座中、低放射核废料处置库在运行,还没有高放射处置库。
而建造一个中、低放处置场,大约需要2亿元的资金。一座高放处置库必须确保至少10万年内安全,这不仅仅是技术问题,更需要大量资金。
中国核电站大多位于东南沿海,核电站与核废料处置库之间相隔数千公里,运输耗时较长。这种核电站与核废料处置库分置的布局特点,使得核废料处理过程中隐藏了更大的风险 3核电厂的反应器内有大量的放射性物质,如果在事故中释放到外界环境,会对生态及民众造成伤害。1986年4月26日 切尔诺贝利核电站爆炸。核泄漏事故后产生的放射污染相当于日本广岛原子弹爆炸产生的放射污染的100倍。 这次事故直接导致50人死亡,300多人因受到严重辐射先后被送入医院抢救,有更多的人受到不同程度的辐射污染
问题六:核电站对人有什么危害 在不发生泄漏的情况下无任何危害,反应堆都有多重保护,核辐射完全可以屏蔽在核岛内。但是发生了泄漏,那就不死也残了。
㈤ 核电行业未来发展的分析和核电行业对中国经济和社会的发展作用
未来发展分析:
为适应经济发展和满足能源不断增长的需要,实现经济、社会、生态环境的协调发展,必须加快核能的发展。中国把核电作为国家能源战略的重要组成部分,逐步提高核能在能源供应总量中的比例。在经济发达、电力负荷集中的沿海地区,核电将成为电力结构的重要支柱。
中国核电建设在以我为主,中外合作,引进技术,推进自主化的方针指导下,统一技术路线,采用先进技术,不断提高核电机组的安全水平和经济性,实现大型核电机组建设的自主化和本地化,提高核电产业的整体能力。
中国核能利用坚持可持续发展,核电发展采用热堆-快堆-聚变堆“三步走”的方针。近期以压水堆核电站为主,在充分利用已有技术,建设一批压水堆核电站的同时,积极开展国际合作,适时建造先进压水堆核电站,并以此作为我国未来核电发展的主力机型。
中国积极推进和平利用核能的开发研究,力争在一些重大项目上有新的突破。例如,利用快堆发电、用核能进行海水淡化、用低温供热堆采暖、用高温气冷堆发电和制氢等,当条件成熟时,使其成为新的产业。
中国的核燃料立足国内,将同步建设与核电发展相适应的核燃料循环产业,技术上要达到或接近国际先进水平,经济上要有较强的竞争力。核电燃料组件依靠国内生产,天然铀资源利用国内外“两种资源、两个市场”。中国采用闭式核燃料循环的路线,通过对核电站乏燃料的处理,提取钚制成铀钚混合燃料供核电站使用,并为以后快中子堆核电站的发展创造条件。
放射性废物治理是核燃料循环的重要组成部分。放射性废物,特别是长寿命、高放射性的废物能否得到妥善处理与处置,不仅关系到公众人身安全和人类居住环境的安全,而且关系到国民经济的可持续发展。积极推进放射性废物处理和地质处置的研究开发,开展高放废液的分离、嬗变研究,以降低锕系核素和长寿命裂变产物安全处理与处置的难度,减少其对公众和人类居住环境的影响。
中国同位素和辐射技术的应用有着广阔的发展空间。今后20年,预计全行业总产值的年增长速度会保持在15%以上,到2010年,全国同位素和辐射技术应用的产业规模将超过1000亿元人民币。
中国和平利用核能事业有着良好的发展前景。我们愿意在平等互利的基础上,与各国开展广泛的合作,进一步推进核能和平利用,更好地为经济社会发展服务,为人民造福。
核电行业对中国经济和社会的发展作用:
发展核电是我国满足电力需求、优化能源结构、保障能源安全,促进经济持续发展的重大战略举措;发展核电是减少环境污染,实现经济和生态环境协调发展的有效途径;发展核电是寓军于民、促进核科技工业发展,保持和提高国家核威慑能力的主要手段;发展核电是促进装备制造业产业升级的重要措施;发展核电符合世界能源利用的趋势。
根据中央领导讲话、有关部委文件和中国核工业集团公司的提法,加快核电发展的意义和作用,可以概括为以下五个方面。
1.发展核电是我国满足电力需求、优化能源结构、保障能源安全,促进经济持续发展的重大战略举措
党的“十六大”提出全面建设小康社会的宏伟目标,到2020年国内生产总值将比2000年翻两番。为满足经济和社会发展对能源电力的需求,到2020年全国电力装机总容量要达到10亿千瓦左右。这对加快电力建设、增加电力供给,提出了更高要求。
核电作为一种清洁能源,技术已经成熟,安全可靠性得到了实践验证,供应能力较强,已成为国家能源电力战略的重要组成部分。加快核电发展,发挥核电在电力供应中的更大作用,是我国电力发展的必然选择,是满足经济和社会发展的重要保障。
我国现阶段电源结构中,火电比重过大。这种格局不仅受到资源储量和开发的制约,而且受到环境容量和运输能力的严重限制。我国一次能源集中在北方和西部,而经济发达、人口稠密的沿海地区却缺乏常规能源。加快核电发展,构造“北煤、西水、东南核”的国家能源新格局,有利于优化能源结构,缓解运输压力,对提高能源效率和电网运行的安全可靠性,保障国家能源安全乃至经济安全,具有重要战略意义。发展核电,对保障沿海发达地区的经济快速增长,具有突出的作用。
2.发展核电是减少环境污染,实现经济和生态环境协调发展的有效途径
一座百万千瓦级的燃煤电厂,每年产生二氧化碳650万吨、二氧化硫1700吨、氮氧化物400吨,还有大量的灰尘、固体颗粒等。2003年,我国燃煤发电排放的二氧化硫达810万吨,占全国二氧化硫排放总量的34%。电力工业发展面临巨大的环保压力。
核电不排放硫氧化物、氮氧化物和温室气体。2003年,全世界核发电量相应减少了20多亿吨的二氧化硫排放。大规模发展核电,对于保护生态环境,促进能源与经济社会的可持续发展,将起到更加重要的作用。
3.发展核电是寓军于民、促进核科技工业发展,保持和提高国家核威慑能力的主要手段
核科学技术是现代科学技术的重要组成部分,是国家科技实力的重要标志。核科技工业是国防建设的重要基石,是国家安全的重要保障,核战略是无可替代的最重要的国家战略。
国外经验和我国实践证明,和平时期特别是在禁产禁试的形势下,能够替代核武器研制生产又能完整保留一支与核大国相适应的核科技力量并不断提高,有效的办法就是发展核电。自主地、较大规模地发展核电,有利于维护我国核科技工业体系的完整性,带动和促进我国整个核工业产业的发展,从而进一步增强我国的核威慑力量,实现我国的核战略目标。
4.发展核电是促进装备制造业产业升级的重要措施
核电是高技术密集的产业,核电发展涉及材料、冶金、化工、机械、电子、仪器制造等众多行业。由于核电的特殊性,对这些行业提出了技术水准很高的要求。发展核电,有利于推动这些行业的技术改进,提高技术水平和管理水平。
一座百万千瓦双堆核电站,按比投资1500美元/千瓦计算,造价即达30亿美元,约合人民币250亿元。推进核电建设的自主化、本土化,有利于为我国装备制造业提供较大市场,促进整个国民经济的发展。
5.发展核电符合世界能源利用的趋势
世界核电发展已经走过半个世纪的历程。截止2004年6月,全世界共有442台核电机组在运行,装机容量达到3.63亿千瓦。核电占全世界发电总量已经连续17年稳定在16%左右。2003年有16个国家的核电比例在25%以上。核电在发达国家的电力供应中的比例,法国为77.6%,德国28.1%,日本为25%,英国23.7%,美国20%,俄罗斯为16.5%。
进入新世纪以来,美国公布了新的能源政策,支持核电发展,并将核电作为国家能源政策重要组成部分,计划2010年起建设一批新的核电站。俄罗斯2000年批准的核能发展战略,规划建设一批更大容量的压水堆和新型快堆机组,计划在2020年前建造40台核电机组。亚洲地区的日本、韩国和印度都有宏伟的核电发展计划。英国能源政策也发生了重大改变,计划重新发展核电。德国等西欧某些国家停止发展核电后,出现了一些深层次难以解决的问题,正在重新考虑核能发展的政策。从世界核电发展趋势看,新的核电技术正向着更安全、更经济的方向发展。西方国家开发先进核电技术的工作一直没有停止过,目前正在开发第四代核电反应堆。
你自己缩写一下就行。
㈥ 和平利用核能对中国有什么意义
我个人认为:和平利用核能 ,从国内角度来讲,这有利于平衡我国能源的使用紧缺,优化能源的使用率,从而提升了保护国内的生态平衡;二来可以落实和进一步实现科学发展观。从国外角度来讲,这有利于提升我国在世界的综合国力,大大提高我国在维护世界和平与发展的国际影响力等等。
㈦ 核能利用对环境的影响
核能开发利用现状及对环境的污染
唐 浩
【关键词】:能源危机 核能发展 开发利用现状 核电 环境污染
【摘要】:面对日益加剧的能源危机以及化石能源的利用产生的温室效应、环境污染等问题,世界各国都对能源的发展决策给予极大重视。核能是一种清洁、安全、技术成熟的能源,开发利用核能成为能源危机下人类做出的理性选择。本文着重阐述了核能的发展历程、核能的开发利用现状以及核能的开发利用对环境造成的影响,分析了核能、核电相对于传统能源的明显优势,指出了大力开发利用核能、发展核电是实现人类社会和经济可持续发展的必然选择,清洁、高效的核能有着广阔的发展前景。
能源是人类社会和经济发展的保障性资源,同时能源问题也是世界性的问题。目前人类所使用的能源主要是化石能源,自19世纪70年年代产业革命以来,化石燃料的消费量急剧保持增长,90%以上的世界经济活动所需的能源都依靠化石能源提供,由于大量消耗,这类资源正趋于枯竭;同时化石燃料的大规模利用也带来了严重的环境污染,导致了温室效应和全球气候变暖等一系列环境问题。能源危机与环境危机日益紧迫,寻找新的清洁、安全、高效的能源是人类所面临的共同任务。
现代社会中,除了煤炭、石油、天然气、水力资源外,还有许多可利用的能源,如风能、太阳能、潮汐能、地热能等等,但是由于技术问题和开发成本等因素,这些能源很难在近期内实现大规模的工业生产和利用;而核能是一种经济、安全、可靠、清洁的能源,同各种化石能源相比起来,核能对环境和人类健康的危害更小,这些明显的优势使核能成为新世纪可以大规模使用的安全和经济的工业能源。从20世纪50年代以来,前苏联、美国、法国、德国、日本等发达国家建造了大量的核电站, 由于核电具有巨大的发展潜能和广阔的利用前景,和平发展利用核能将成为未来较长一段时期内能源产业的发展方向。
1 能源危机与发展核能的必然性
由于人类对化石能源的大规模开发利用,可供开采的化石能源日益衰竭,在世界一次能源供应中约占87.7% , 其中石油占37.3%、煤炭占26.5%、天然气占23.9%。非化石能源和可再生能源虽然发展迅猛、增长很快, 但仍保持较低的比例, 约为12.3%。根据《2004年BP 世界能源统计》, 截止到2003年底, 全世界剩余石油探明可采储量为1565.8亿吨, 2003年世界石油产量为36.79亿吨, 即可供开采年限大约42 年。煤炭剩余可采储量为9844.5 亿吨, 可供192 年,天然气剩余可采储量为175.78 万亿立方米, 可供67 年。化石燃料在使用过程中也造成了严重的环境污染,温室效应、酸雨和全球气候变暖等全球性的环境问题不断加剧,资源危机和环境危机使人类文明的可持续发展受到制约和挑战。
在已知的可再生新能源中,由于技术上的困难和经济性等因素,已开发的太阳能、风能、沼气等均未能大规模利用,只有水电资源已大规模开发利用,尽管尚可继续开发,但仅靠水电资源难以满足经济和社会发展的需求,由此看来 ,要使可再生能源达到全面应用并足以支持经济持续发展的水平,还需要相当一段进一步开发的时期。由于新的可再生清洁能源目前面临技术和成本的问题,只有核能是一种既清洁、又安全可靠且经济上具竞争力的最现实的替代能源。
根据国际原子能机构的一位专家发表的报告,一座装机容量为100万KW 的燃煤电厂,每年要耗煤250万吨,所排放的废物有:二氧化碳650万吨(含碳200万吨),二氧化硫1.7万吨,氮氧化物4000吨,煤灰28万吨(其中含有毒重金属约400吨)。而同样规模的一座压水堆核电站,每年才消耗低浓铀25吨(相当于天然铀150吨),所排放的废物为:经处理固化的高放废物9吨(体积约3立方米),将被存放于地下深层与环境隔绝的岩井中,另有中放废物200吨、低放废物400吨。核电厂不排放二氧化碳、二氧化硫或氮氧化物,且1kgU-235裂变产生的能量相当于200吨标准煤。据有关报告显示,现在世界每年因燃烧化石燃料所排放的二氧化碳已达55亿吨(以碳计)之多,而截止1993年的统计,由于使用核能发电已使世界二氧化碳的排放减少了8%。所以在未来相当一段时期内,发展利用核能将成为21世纪人类应对能源危机和实现经济可持续发展的必然选择。
2 核能的发展历程与开发利用现状
2.1 核能发展的简单历程
人类对核能的现实利用始于战争。核能的战争用途在于通过原子弹的巨大威力损坏敌方人员和物资, 达到制胜或结束战争的目的, 目前人类对核能的开发利用主要是发展核电, 相对与其他能源, 核能具有明显的优势。核电站的开发与建设开始于20世纪50年代,1954年,前苏联建成电功率为5000kW 的实验性核电站;1957年,美国建成电功率为9万kW 的希平港原型核电站;这些成就证明了利用核能发电的技术可行性。国际上把上述实验性和原型核电机组称为第一代核电机组。
20世纪60年代后期以来,在试验性和原型核电机组基础上,陆续建成电功率在30万kW 以上的压水堆、沸水堆、重水堆等核电机组,它们在进一步证明核能发电技术可行性的同时,使核电的经济性也得以证明:可与火电、水电相竞争。20世纪70年代,因石油涨价引发的能源危机促进了核电的发展,目前世界上商业运行的四百多座核电机组大部分是在这段时期建成的,称为第二代核电机组。
第三代核电设计开始于20世纪80年代, 第三代核电站按照URD或EUR 文件或IAEA 推荐的新的安全法规设计,但其核电机组的能源转换系统(将核能转换为电能的系统)仍大量采用了第二代的成熟技术,预计一般能在2010年前进行商用建造。从核电发达国家的动向来看,第三代核电是当今国际上核电发展的主流。
与此同时,为了从更长远的核能的可持续性发展着想,以美国为首的一些工业发达国家已经联合起来组成“第四代国际核能论坛”(GIF),进行第四代核能利用系统的研究和开发。第四代是指安全性和经济性都更加优越,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统,其目标是到2030 年后能进行商用建造。
2.2 世界核能的利用现状与核电的发展
1954年前苏联世界建成第一座发电功率为5000KW 的试验性核电站, 美国则在1957年12月建成了发电功率达90000KW的希平港压水堆核电站。20世纪60年代到70年代, 是世界各国经济快速发展时期, 电力需求也以十年翻一番的速度迅速增长, 此时, 核电的安全性和经济性得到验证, 相对于常规发电系统的优越性鲜明地显现出来, 给核电发展提供了一个广阔的市场。核电迅速实现了标准化、批量化的建设和发展。
国际原子能机构公布的一份报告显示, 立陶宛核能发电在全国发电总量中所占的比重接近80%, 这一比重在世界上是最高的。在世界主要工业大国中, 法国核电的比例高, 核电占国家总发电量的78%, 位居世界第二, 日本的核电比例为40%, 德国为33% , 韩国为30% , 美国为22% , 而我国仅为2%右, 发展空间很大。
由于三里岛核电站事故尤其切尔诺贝利核电站事故, 核能在上世纪90年代发展速度明显放缓, 核恐惧和高成本使得核能利用较高的发达国家重新审视核电的利弊, 美国90年代一直致力于核电站的维护而不是新建; 在欧洲, 许多国家也在讨论如何迅速关闭其核电厂。但进入新世纪核电又受到世界各国的重视,出现了较快的发展势头。截至2007年12月, 全世界正在运行中的反应堆有439座, 相比2002年的444座微量下降, 但发电能力稳步上升, 总发电量达到37117GW , 全世界核电供应已经达到总供电量的16%, 许多国家达到总供电量的1/3。
随着国际能源价格的进一步飙升, 2000年以来发达国家正在转变其原有的核电发展态度, 调整原有的核电发展计划。美国2005年通过能源政策法, 联邦政府开始积极鼓励建设新的反应堆。英国政府在2008年2月宣布将投巨资发展核电,在2020年以前, 新建反应堆6个, 使英国的电力供应提高18%。据国际原子能机构预测, 到2030年, 全球核电所占份额将增加到27%。正在崛起的发展中国家能源需求旺盛, 其核能增长最快, 1999到2020年间将增长417% , 尤其是发展中的亚洲, 据世界原子能机构的统计, 未来65座正在兴建或正在立项的核电站中, 2/3分布在亚洲各国。中国目前运行核电机组11个,核电比例为119 % , 核电装机容量900万千瓦, 计划到2020年提高到4000万千瓦。印度运行核电机组17个, 核电比例为216% , 计划到2020年增加20至30个新核电机组,所以目前核电的扩展以及近期和远期的发展前景仍集中在亚洲,亚洲地区尤其是发展中国家发展核电的势头强劲。
2.3我国能源的利用特点与核能的开发利用现状
3 核能的利用对环境造成的影响
虽然核能具有来源丰富、安全、清洁、高效等明显的优点,但是核能仍然可能对环境造成严重的污染,对人类社会和经济的可持续发展造成重大损害。核能的利用对环境造成的污染主要是放射性污染。核能利用上的任何疏忽、无知、差错,其结果并不亚于爆发一场小型核战争,有时甚至遗患无穷,给人类的生活乃至生存,投下可怕的阴影。目前核阴云主要来自核废料的严重污染,使用核能所产生的核废料会产生危险的辐射,并且影响会持续数千年。
到目前为止,全世界核能民用的历史上仅发生过两起重大核安全事故。1979年3月,美国三哩岛核电站二号堆发生了一次严重的失水事故,幸好由于堆的事故冷却紧急注水装置和安全壳等设施发挥了作用,使排放到环境中的放射性物质含量极小,虽然并没有造成大的人员伤亡但在经济上却造成了10到18亿美元的损失,事故的危害尚在进一步观测调查中。1984年4月,前苏联基辅附近的切尔诺贝利核电站发生事故,造成大量的发射性物质泄漏,30km范围内的居民被迫撤离,欧洲不少国家也受到轻微的核污染,引起了强烈的国际反响。据报道,有31人死亡,203人受伤,135000人被疏散。
当前对环境造成污染的放射性核素大多来自核电站排放的废物,核电可能产生的放射性废物主要是放射性废水、放射性废弃和放射性固体废物。1座100万KW的核电站1年卸出的泛燃料约为25t,其中主要成分是少量未燃烧的铀、核反应后的生成物——钚等放射性核素,核废料中的放射性元素经过一段时间后会衰变成非放射性元素。此外,还有铀矿资源的开发问题,由于铀矿资源的开发造成的废弃、废水、废渣等污染也不可忽视,对铀尾矿也必须进行妥善处理,如果处理不好,将会覆盖农田、污染水体,甚至对自然和社会都造成严重影响。一旦发生核事故或核泄漏,对人类和环境造成的影响都是灾难性的,只有加强核安全和辐射安全的管理,处理好放射性核废料,合理科学地利用核能,才能保证核能安全的开发利用。
3 展望未来,4 核能有广阔的发展前景
21 世纪初人类面临发展的能源瓶颈, 传统能源存量不足, 效率低, 污染大。目前“三足鼎立”的核能、水能、燃气能中核能优势明显, 核电具有资源丰富、高效、清洁而安全的相对优势, 水电资源的开发取决于长远生态影响的评估和科学论证, 燃气能受制于资源的存量, 其他可再生新型能源如风能、生物质能特别是太阳能由于成本高、效率低, 短期内难以成为能源供应主力, 因此, 未来20——30 年核电将会迅速发展以缓解人类能源需求的燃眉之急。
21 世纪的能源格局是核能、水能、燃气能“三足鼎立”, 核电的开发和利用给生态资源、环保护、社会生活以及经济发展带来巨大利益, 也对人类的安全和可持续发展形成潜在威胁, 从可持续发展的角度对核电开发和利用进行分析, 能更好地保护环境和促进人类利益。
【参考文献】
彭俊 愈军,世界核电现状与发展趋势简介,核安全,2007(4).
傅济熙,可持续发展与核能利用,中国核工业·核能论坛,1999(2).
欧阳予,核能和平利用的发展历程与前景展望,电气技术,2009(8).
谭衡霖 徐光平等,核能利用与我国可持续发展的战略关系,电力环境保护,2008(1).
唐黎标,世界各国如何处置核废料.
欧阳予,世界核电国家的发展战略历程与我国核电发展,中国核电,2008(2).
刘艳红 李刚,核能是危险还是安全的,科学之友,2009(8).
㈧ 核能给国家带来了哪些影响
在早先的非市场经济国家,宏观管理体制及“罕转民”肆誉的运行机制较差。先以中国为例。
中国在20世纪50~60年代,逐步形成了一套科技管理体制。当时,需要研究什么项目,几乎就成立什么部院。此后,又成为国家一个个独立的产业部门。例如,为实施原子能原子弹工程(当时称“596工程”),中国建立了第二机械工业部;为实施火箭导弹航天工程,中国建立了第七机械工业部。需要研究什么学科或课题就成立什么研究所或研裂拿段究室。例如,二机部北京401研究所(对外称中国科学院原子能研究所,即今中国原子能科学研究院),101研究室是反应堆实验室;201研究室,是加速器实验室。每个部、所、室,都是一个庞大的机构;例如,二机部有30万职工队伍,5万科技人员;401所且不说在“文革”以前,就是将放射性同位素应用、放射生物与放射医学、堆工程、受控热核反应以及高能物理等部分先后分出以后,在20世纪70年代,该所主要研究领域还有核物理、放射化学与放射化工、堆科学以及同位素制备等,共有21个研究室,连家属及临时工在内超过10000人。每个研究所都已形成了相当的规模,并牢牢地扎根于所在地区,“割据”成一大块独立的自然经济式的科学城区,构成了一个“小社会”。必须指出,像401这样的院所,在我国并非凤毛麟角,中央各部委及中国科敏皮学院约有1000家(750所高等院校不算在内)。
中国的这种管理体制是模仿前苏联而逐步形成的。因此,中国和苏联解体后的俄罗斯等国,当今天面临经济转轨时,在核工业等领域首先就有一个如何寻找出路的问题。
俄罗斯有座城市叫谢韦尔斯克,但人们在地图上却无法找到它。它的占地面积不小,直径达数十公里,人口约10万。街道、广场、住宅、工业区