❶ 古代的人如何运算数学的加减乘除
算筹
根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。
在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。
算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。
算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢?
那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。
按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。
中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。
二进制思想的开创国
着名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。
元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。
《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。
十进制的使用
《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。
十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。
我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。
十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。着名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。"
分数和小数的最早运用
分数的应用
最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。
西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。
从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作。
分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。
小数的最早使用
刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。
九九表的使用
作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。
根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。
除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。
乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。
负数的使用
人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。
负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。
在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。
在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。
从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。
圆周率的计算
圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。
我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为3.14,也有人认为他得到了更好的结果:3.1416。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。
❷ 小数除以小数的计算方法是什么
小数除以小数,就是将被除数和除数同时扩大同样的倍数倍,将除数的小数点去掉,就可以按整数除法的方法去计算了。
❸ 小数点除法怎么算
除数是整数的小数除法,先按照整数除法算出商,商的小数点与被除数的小数点对齐;除数是小数的小数除法,先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够时用0补足),然后按照除数是整数的小数除法进行计算。
小数除法的运算法则是怎样规定的?
(1)除数是整数的小数的除法
除数是整数的小数除法,可按照以下步骤进行计算:
①先按照整数除法的法则去除;
②商的小数点要和被除数的小数点对齐;
③除到被除数的末尾仍有余数时,就在余数后面添0,再继续除。
例1:117÷36=3. 25
(2)除数是小数的小数除法
除数是小数的小数除法,可按照以下步骤进行计算:
①先把除数的小数点去掉使它变成整数;
②看除数原来有几位小数,就把被除数小数点向右移动相同的几位(位数不够时补0);
③按照除数是整数的除法进行计算。
(3)取商的近似值
在实际生活和生产中,常常遇到小数除法不能除尽或所得的
商的小数位数太多,但实际又不需要,可以根据要求和具体情况取商的近似值。
例 3:122÷16≈7.6(得数保留一位小数)
给我采纳谢谢~
❹ 小数点除法竖式怎么算啊(详细) 快快快
小数点的除法关键是如何确定商的小数点位置,是以除数的小数点为准把除数和被除数同时扩大一个数后在相除;
例:1.25÷0.5=2.5
---------
0.5/1.25 (分别把除数和被除数扩大10倍)
2.5 (注意小数点的位置)
---------
5/12.5
10
---------
25
25
---------
0
❺ 小数点的除法怎么算
1、除数是整数的小数的除法
①先按照整数除法的法则去除;
②商的小数点要和被除数的小数点对齐;
③除到被除数的末尾仍有余数时,就在余数后面添0,再继续除。
(5)印度人怎么算小数除法扩展阅读:
一、被除数和商关系
1、被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
2、除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
二、整数除法的运算法则
1、从被除数的最高位起,取出和除数位数相同的数(如果取出的数小于除数,则要取出比除数多一位的数) ,用除数去除它,就得到商的最高位数和余数(余数可能为零) 。
2、把余数化为下一位的单位,加上被除数这-位上的数,再用除数去除它(除数小于该数时商为0),得到商和余数这样继续下去直到被除数上的数字全部用完,就得到最后的商和余数。
❻ 小数除法口诀是什么
小数除法顺口溜是除数的小数点一划(去掉小数点),被除数的小数点搬家,向右搬家搬几位,除数的小数位数决定它。
小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
小数除法要点知识:
1、小数除法的意义:已知两个因数的积与其中的.一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大(缩小),商随着扩大(缩小)。
③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32。
7.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。
❼ 古代印度怎么表示小数
国际通用的数字(由印度人发明,由阿拉伯人传向欧洲,由欧洲人将其现代化),就是0,1,2,3,4,5,6,7,8,9共10个计数符号。采取位值法,高位在左,低位在右,从左往右书写。借助一些简单的数学符号(小数点、负号等),这个系统可以明确的表示所有的有理数。为了表示极大或极小的数字,人们在阿拉伯数字的基础上创造了科学记数法。古代印度人发明了包括逗零地在内的十个数字符号,还发明了现在一般通用的定位计数的十进位法。由于定位计数,同一个数字符号因其所在位置不同,就可以表示不同数值。如果某一位没有数字,则在该位上写上逗0地。逗0地的应用,使十进位法臻于完善,意义十分重大。 拉丁的数字(Numeral)1 unus2 o 3 tres, tria5 quinque 6 sex 7 septem 8 octo 9 novem 10 decem
编辑于 2020-03-17
小学四年级数学补习数学_父母别着急_学习这位家长的做法
值得一看的数学相关信息推荐
小学四年级数学补习就选学大教育十九年辅导经验,小学四年级数学补习中国教育行业口碑好的机构!学大小学四年级数学补习将永远视教育质量为生命,帮助孩子考上理想学校找小学四年级数学补习上学大网!!
m.xueda.com广告
学前班数学题大全_高效学习_免费试听
值得一看的学前班相关信息推荐
学前班数学题大全个性辅导,优质师资,完善教研体系,学前班数学题大全品质保障,高性价比,让成绩快速提升!
m.dianping.com广告
— 你看完啦,以下内容更有趣 —
有一部分国家用逗号表示小数点 有哪些国家
用逗号表示小数点的国家有法国,德国和巴西等。不同地区用不同的符号来表达小数点。 国际上使用阿拉伯数字主要的两个小数点符号为“句点”和“逗号”。汉语地区和大多的英语地区都使用“句点”,但是大多的其他欧洲国家和其前殖民地都使用“逗号”。由于小数点符号的习俗影响其他数字分位符号的选择,如千分位符号,所以这条目也覆盖其它数字分位符号的话题。 (7)印度人怎么算小数除法扩展阅读: 标点符号的分类: 标号包括破折号、 括号、省略号、书名号、 引号、连接号、间隔号、着重号、专名号等,主要标明词语或句子的性质和作用。点号包括 顿号、 逗号、分号、句号、 问号、 叹号及 冒号等,这些点号主要表示语言中种种停顿。 需要注意的是,问号和叹号也兼属标号:就其表示句末停顿而言,是点号;就其表示句子语气而言,是标号。 标点符号介绍: 1、逗号(,):一句话中间的停顿。 2、分号(;):一句话中间的并列分句的停顿。位置:同“ 逗号”。 3、顿号(、):一句话中间的词或短语的停顿。位置:同“ 逗号”。 4、冒号:表示下面是引用的话。用在总起用句后面,表示提示下文。用在总结句前面,表示总结上文。位置:同“ 逗号”。 5、句号:陈述句或语气较缓慢的祈使句完了之后的停顿。位置:同“ 逗号”。
6赞·16,123浏览2020-01-28
中国古代怎么表示小数
我国是最先提出使用小数的国家。早在公元3世纪(约260年),我国古代数学家刘徽就提出,把整数个位以下无法标出名称旳部分称为微数,即小数的前身。 最早提出小数的名称的,是我国元代数学家朱世杰(约生活于公元13至14世纪)。
21赞·435浏览2019-08-27
古代怎么表达小数
中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。第一个将这一概念用文字表达出来的是魏晋时代的刘徽。他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒 、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。 到了宋、元时代,小数概念得到了进一步的普及和更明确的表示。杨辉《日用算法》(1262年)载有两斤换算 的口诀:“一求,隔位六二五;二求,退位一二五”,即1/16=0?0625;2/16=0?125。 这里的“隔位”、“退位”已含有指示小数点位置的意义。秦九韶则将单位注在表示整数部分个位的筹码之下,例如: —Ⅲ—Ⅱ表示13.12寸 寸是世界上最早的小数表示法。 在欧洲和伊斯兰国家,古巴比伦的六十进制长期以来居于统治地位,一些经典科学着作都是采用六十进制,因此十进制小数的概念迟迟没有发展起来。15世纪中亚地区的阿尔卡西(?~1429)是中国以外第一个应用小数的人。欧洲数学家直到16世纪才开始考虑小数,其中较突出的是荷兰人斯蒂文(1548~1620),他在《论十进制》(1583年)一书中明确表示法。例如把5.714记为:5◎7①1②4③或5,7'1''4'''。而第一个把小数表示成今日世界通用的形式的人是德国数学家克拉维斯(1537~1612),他在《星盘》(1593年)一书中开始使用小数点作为整数部分与小数部分之间的分界符。 而中国比欧洲早采用了小数三百多年。
78赞·3,180浏览2017-09-16
古印度最大的计数单位是多少?
无量大数是古印度计数单位中的最大数量。无量数一共分为十九级。具体的计数单位和个单位间的进制如下: 1、10^1048576 (上数)10^75(中数):千大数 2、10^524288(上数) 10^72(中数):大数 3、10^262144(上数) 10^68(中数):无量 4、10^131072(上数) 10^64(中数):不可思议 5、10^65536(上数) 10^60(中数):那由他 6、10^32768(上数) 10^56(中数):阿僧祗 7、10^16384(上数) 10^52(中数):恒河沙 8、10^8192(上数) 10^48(中数):极 9、10^4096(上数) 10^44(中数):载 (7)印度人怎么算小数除法扩展阅读 中国古代数字单位 公元190年前后(约东汉时期)在一本名为《数术记遗》的典籍当中,便相 当完整地记载了中国表示数量的数词.这些数词计有一、二 、三、四、五、六、七、八、九、 十、百、千、万、亿、兆、京、垓 、杼、穰、沟、涧、正、载。 而中国数词表示法当中最大的“极”,在这本书当中并没有记载,不过却常用在表示无限大的概念. 唐朝时期,又添进了一个新的成员:大数。其中一部分从古印度梵语中借用,它原本是与小数相对应的,后来才被引申为一个新的数词。下列就是它们代表的数量: 1、万:代表的是10的四次方。 2、亿:代表的是10的八次方. 3、兆:代表的是10的十二次方。 4、京:代表的是10的十六次方. 5、垓:代表的是10的二十次方。 6、杼:代表的是10的二十四次方. 7、穰:代表的是10的二十八次方。 8、沟:代表的是10的三十二次方. 9、涧:代表的是10的三十六次方。 10、正:代表的是10的四十次方. 11、载:代表的是10的四十四次方。 12、极:代表的是10的四十八次方. 13、恒河沙:代表的是10的五十二次方。 14、阿僧祇:代表的是10的五十六次方. 15、那由他:代表的是10的六十次方。 16、不可思议:代表的是10的六十四次方. 17、无量:代表的是10的六十八次方。 18、大数:代表的是10的七十二次方. 参考资料来源:网络-无量大数
3赞·4,263浏览2019-05-14
印度古代的数字18有何意义
国际通用的数字(由印度人发明,由阿拉伯人传向欧洲,由欧洲人将其现代化),就是0,1,2,3,4,5,6,7,8,9共10个计数符号。采取位值法,高位在左,低位在右,从左往右书写。借助一些简单的数学符号(小数点、负号等),这个系统可以明确的表示所有的有理数。为了表示极大或极小的数字,人们在阿拉伯数字的基础上创造了科学记数法。 古代印度人发明了包括逗零地在内的十个数字符号,还发明了现在一般通用的定位计数的十进位法。由于定位计数,同一个数字符号因其所在位置不同,就可以表示不同数值。如果某一位没有数字,则在该位上写上逗0地。逗0地的应用,使十进位法臻于完善,意义十分重大。 拉丁的数字(Numeral) 1 unus 2 o 3 tres, tria 5 quinque 6 sex 7 septem 8 octo 9 novem 10 decem
1赞·130浏览2017-03-17
小学四年级数学补习数学_在家上辅导_成绩提升没烦恼
值得一看的数学相关信息推荐
小学四年级数学补习就选学大教育十九年辅导经验,小学四年级数学补习中国教育行业口碑好的机构!学大小学四年级数学补习将永远视教育质量为生命,帮助孩子考上理想学校找小学四年级数学补习上学大网!!
m.xueda.com广告
小学奥数就上学大1对1小学奥数!!
值得一看的奥数相关信息推荐
小学奥数就上学大教育1对1家教,知名教师一对一辅导,帮助您的孩子急速 !
m.xueda.com广告
印度和欧洲都人种复杂,落后的印度统一了,为何欧洲却没法统一?
印度是一个神奇的国家,除去摩托车能装一个排之外的笑料之外,笔者一直想不通的就是为什么印度能够统一。毕
5条回答·53人在看
印度高僧有权享用妙龄圣女,印度圣女的真实生活是怎样的?
印度是一个比较落后的国家,经济发展较差,又是一个人口大国,女性在印度的地位更是极为低下。在印度,高僧
10条回答·599人在看
10亿年内的某一刻,或许外星人会截获来自地球的声音
导语 1981年8月26日,美国宇宙飞船“旅行者2号”飞过土星,取得了一系列探测成果,其中包括发现了土星的第17颗卫星——土卫17。 今天我们就来说一说“旅行者2号”上的“地球之音”唱片。 19
268人在看
劳动合同经济补偿金标准怎么计算?
法妞问答律师在线咨询
2,278播放
评论
❽ 小数点除法怎么算
1.1/1.1 用它为例。
把除数变成整数,被除数扩大到对应的倍数。记录被除数小数点后还有几位。按整数除法计算,算出结果,然后再根据被除数小数点后有几位把小数点现在商和余数上。
❾ 怎样计算小数乘法和除法呢
简单!乘法跟整数一样,小数后面有几位,小数点就数几位。如算出来是123,小数假如是2位,就数几位,12.3一位,1.23两位。除法:先扩大成整数,再点小数点,你扩大了几倍,就数几位
❿ 小数点数学除法怎么算
小数除法怎么算:
1、先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。
2、再按整数除法的法则进行计算。
3、注意:对齐被除数的小数点,点上商的小数点。