1. 印度出过世界着名的科学家吗
拉曼(Sir Chandrasekhara Venkata Raman, 1888-1970)。印度物理学家,又译喇曼。因光散射方面的研究工作和喇曼效应的发现,获得了1930年度的诺贝尔物理学奖。于1970年逝世,享年82岁。
斯里尼瓦瑟·拉马努金(泰米尔语:ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார்,转写:Srīṉivāsa Rāmāṉujan Aiyaṅkār,又译拉马努詹,1887年12月22日-1920年4月26日)是印度历史上最着名的数学家之一。
2. 请问谁发明了物理呢
物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学着作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。
在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。
力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理大发现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力学运动的绝佳领域。1609和1619年,开普勒先后发现开普勒行星运动三大定律,总结了老师第谷毕生的观测数据。
在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及着名的斜面理想实验来思考运动的问题。他在1632年出版的着作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。
牛顿的理论体系是建立在他的绝对时间和绝对空间的假设之上的,牛顿对时间和空间有着如下的理解:牛顿从绝对时空的假设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即着名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础假设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。
这是我曾经写的一篇论文,当然有很多字的,我已经删去很多了。希望采纳。
3. 印度智慧在古代文明发展中有过什么贡献
印度文明在众多领域的辉煌成就,以及它独特的价值观念和思想体系,使它在整个世界文明中占有极其重要的地位。同时,印度文明又具有强大的辐射力,数千年来对亚洲乃至世界产生了十分深刻的影响,为人类社会的不断进步做出了卓越的贡献。古印度的科学技术(一)
印度是一个具有悠久科学技术传统的国家,尤其在天文、数学和医学领域,印度民族对世界文明的发展做出了重大的贡献。
公元5-6世纪时阿利耶毗陀是古印度首屈一指的数学家和天文学家,他在天文学方面最惊世骇俗的学说是他的日心说,他的这一天才发现,闪现出印度古代文明的伟大智慧。欧洲直到16世纪文艺复兴时期,波兰天文学家哥白尼才使日心说逐渐为人们所认识。阿利耶毗陀的《阿利耶毗陀论》在公元8-9世纪被译成阿拉伯文,后来传入处于文艺复兴前夕的意大利佛罗伦萨及欧洲其他地方。哥白尼于1500-1503年曾在意大利留学,因此完全有可能接触到阿利耶毗陀的学说。《阿利耶毗陀历数书》提出了子夜作为一日之开端的科学观念,他的天文学思想,特别是他提出的以数学作为天文学研究的基础科学方法,对印度后世天文学的发展产生了深远的影响。
发明现称阿拉伯数字的数字系统是印度古代数学对世界文明的另一重大贡献。根据印度考古发现,这一数字系统可能是在佛教诞生之后出现的。印度数字系统经中东阿拉伯地区传入欧洲,西方人未加详考,故称之为阿拉伯数字,这在古代资讯不发达的时代是完全可以理解的。一种发明只要实用,人们并不会刨根问底究其来源的。然而现代人是不会轻视印度数字系统对世界的意义。A.L.巴沙姆认为:“在数学方面,西方世界受惠于印度的程度无论怎样估量都不会过度。如果没有发达的数字系统,大多数被欧洲引以自豪的伟大发明都将不可能,如果欧洲一直被不便使用的罗马数字所束缚,这些发现与发明也都是不可能的。”美国科学史学者萨尔顿也曾经指出:我们数字和零的使用,是印度教徒发明的,然后经由阿拉伯人传给我们。这些评价总算理清了事实,无疑是得当的。零的概念是在印度的形成,与印度宗教哲学中的“空”的观念有关。无穷大似乎也与印度哲学中认为宇宙本原梵是无限的这一观念有关。零与无穷大的概念,直到中古时期才得到完全的理解。
公元5世纪的阿利耶毗陀在数学方面最引人瞩目的成就就是计算出了圆周率∏的近似值为3.1416。 以此同时我国南朝伟大的数学家祖冲之也在公元5世纪计算出了圆周率的值。他推算出圆周率在3.1415926与3.1415927之间,应当说阿利耶毗陀与祖冲之代表了当时世界数学的最高成就,他们得出的圆周率值都比希腊人精确,领先世界一千余年。随后,印度的数学家们又将圆周率的值计算到小数点后9位。
公元9世纪时的印度数学家摩科毗罗也取得了突出的成就,他是印度有史以来数学家中第一个提到椭圆面积计算方法的人。12世纪的印度着名天文学家巴斯伽罗阿阁梨也是一位大数学家,他是世界上最早对任何数除以零的意义有所领悟的数学家。他认为,无穷大不论除以任何数字,其商都还是无穷大。由于他在数学方面的精湛造诣,使他在天文学研究方面得心应手,游刃有余。
印度民族的数理逻辑能力在世界各民族中是相当突出的,印度计算机软件业能够在20世纪90年代以来的短暂时间内异军突起,就与数学底蕴深厚这一民族传统具有渊源关系。印度古代医学源远流长,自成体系,在世界上占有十分独特而重要的地位。吠陀时期的《阿阁婆吠陀》中就已经记载了人体骨骼的准确数目。生活在公元1-2世纪时期的庶罗迦和生活在公元4世纪时期的妙闻,是生命吠陀最着名的传人。庶罗迦已经天才地认识到病菌与人患病有关,但并不认为病菌是至病的唯一因素。庶罗迦十分重视医生的职业道德,其核心思想是,医生必须全部身心献给医疗事业,治病救人的使命重于医生个人的生命,医生工作时应当集中全部精力,医生应当尊重患者的隐私。医生必须竭诚为患者的健康而奋斗,决不能背弃患者,哪怕牺牲自己的生命也在所不惜。医生不能醉酒;不能作恶;不能结交不肖之徒。。。你们必须和颜悦色。。。体贴患者,并不懈提高自己的(医学)知识。这些职业操守,即使在今天也有很多人难以做到,因此非常难能可贵。
在庶罗迦之后一代名医妙闻成为了印度外科的鼻祖,妙闻很可能是世界上最早也是最透彻理解人体解剖学对医学科学发展重要性的外科医生,他不但精通外科,而且对妇产科等其他科目也十分擅长。在妇女地位低下的时代,能够如此关注妇科科学,非有大医之仁心难以做到这一点。他的膀胱结石切除术,领先于欧洲人近十个世纪。他发明的皮瓣移植技术至今仍然为整形外科的基本医疗手段之一。他还为遭受鼻刑的病人修复受损的鼻子,从而开创了印度的整形外科。由于妙闻的开拓性贡献,印度外科医学在世界上长期处于领先地位。在整形外科领域,印度更是长期保持优势。英国东印度公司的外科医生就曾经放下架子,向印度同行虚心求教。印度医学还是世界上最早注意并倡议护理牙齿的国度。除了天文、历算和医学之外,印度古代在物理、化学、冶金等领域都取得了相当的成就。
梵语古典文学(二)
印度人民自古以来就表现出非凡的想象力和创造力,印度的寓言与古诗文学的丰富与影响,远远超出了其他古代国家,在世界文明发展历程中占有独特的极其重要的地位。巴利语《佛本生故事》就是一部体系庞大的佛教寓言故事集,也是世界上最古老的寓言故事集之一。全书由547个故事组成,讲述佛教创立人释迦牟尼前生的种种故事。我国知名梵文巴利文专家郭良鉴先生认为,这部人类最古老的诗文并用、韵散相济的寓言故事集,“不仅在印度文学史上,也在世纪文学史上占有重要地位”,这种评价是十分恰当的。《五卷书》是古代印度又一部着名的寓言故事集。鲁迅先生曾经说过:“尝闻天竺寓言之富,如大林深泉,他国艺文往往蒙其影响”。印度除了寓言如林如泉外,故事也似江似海。
《佛所行赞》早在公元5 世纪初就译成汉语传入我国。用汉语文言翻译印度古代诗歌,成为中印文化交流史上的一段佳话。梵语原着今只残存半部,而汉语和藏语译本却是全本。
迦梨陀裟是印度梵语古典文学最杰出的代表。他是印度与世界公认的大诗人与大剧作家。他的名声在印度一直长盛不衰,他的作品在翻译成外国语言后也一直受到高度评价。他使梵语诗歌与戏剧的创作达到难以涉及的巅峰。可以说,他是印度古文学史上首屈一指的巨匠。印度近代文学巨人泰戈尔将迦梨陀裟奉为楷模,就名声、成就与影响而言,两人一前一后,形成印度文化与文学历史上双峰并峙的现象。1956年迦梨陀裟被世界和平理事会列为该年纪念的世界文化名人之一。迦梨陀裟的长篇抒情诗《云使》在印度各种地方语言译本甚多,最早的外语译本则是约13世纪时的藏语本。1813年英国学者威尔逊将其译成英文,后来德文、法文等欧洲文学译本相继刊行。德国大诗人歌德读过威尔逊的译本,对《云使》十分赞赏。
1956年,金克木先生的中文译本问世。《云使》细腻的情感,优美的语言,清新的譬喻,和谐的韵律,再加上丰富的修辞技巧,使这部抒情诗达到了梵语诗歌艺术的最高境界。
另外古典梵语戏剧在世界戏剧艺术之林中也独具特色。由于印度人天性乐观,其人生哲学主张为欢乐而生存,因此在印度戏剧中悲剧犹如凤毛麟角,几乎所有的戏剧均以大团圆收场。所以梵语戏剧基本上是喜剧,有些则是悲喜剧。迦梨陀裟不但是梵语古典文学时期最杰出的诗人,而且是整个梵语文学史上空前绝后的伟大剧作家,他在印度戏剧文学中的地位,丝毫也不亚于莎士比亚在英国戏剧文学中的地位。他实际创作了多少剧本,现在还是一个未知数。他的戏剧作品的数量虽然仅为莎士比亚戏剧作品的十几分之一,但足以表明他的才情不在莎翁之下。五幕神话爱情剧《优哩婆湿》不仅内容美好,情节曲折,富于戏剧性,而且洋溢着浓郁的诗情画意,因而极具艺术感染力。该剧描写一个天女为了追求爱情,不惜冲破天庭的羁绊,成了勇敢的化身。她与我国古代神话故事《牛郎织女》中的织女颇有相似之处。季羡林先生已将该剧译成中文。《沙恭达罗》是一部七幕爱情剧,这是迦梨陀裟三部戏剧中的代表作,也是梵语戏剧文学的最高典范。剧本结构严谨,人物个性鲜明,语言优美清新,它体现了印度传统味论诗学的审美原则。迦梨陀裟全新的创作手法使这个古老的故事变得流光溢彩,美不胜收,魅力无穷,传遍世界。剧本的中文译者季羡林先生认为,《沙恭达罗》是一部“万古长新的不平凡的诗篇”,可谓恰如其分。20世纪50年代和80年代初期,中国青年艺术剧院曾两度在北京隆重演出《沙恭达罗》,获得极大成功。
佛教传到中国,佛经大量译入,印度文化对中国文化必然发生深刻的影响。文学也不例外,小说《西游记》中的孙悟空的形象既是一例。孙悟空形象的塑造,乃是通过汉译佛经,远承《罗摩衍那》重要角色哈奴曼形象影响的结果。反映公元前1000年到公元前700年间事件的长篇史诗《摩柯婆罗多》成为后世印度文化特别是文学取之不竭的丰富源泉。释迦牟尼最初讲道用的可能就是摩揭陀语和半摩揭陀语。
印度是一个善于吸收外来文化,又善于继承和发展自己传统文化的民族,印度本民族传统与西方现代文化的结合,产生了更加超越的文化精神。据美国高盛公司最近的预测,在今后的半个世纪中,印度的人均收入将是目前的35倍。届时,中国将超越美国成为世界第一经济强国,而印度将成为仅次于中国的世界第二经济强国。
4. 一个最有资格获得诺贝尔奖的印度物理学家波色
印度有一个物理学家波色,研究量子力学的人必然知道他的名字,因为粒子被分为两大类,期中一类就被命名为玻色子,而另一类叫费米子。他的研究为玻色-爱因斯坦统计及玻色-爱因斯坦凝聚理论提供了基础。后来三个物理学家仅仅通过实验证实了波色-爱因斯坦凝聚态就获得了2001年诺贝尔物理奖。所以他没有得到诺贝尔奖确实有点冤枉。
萨特延德拉·纳特·玻色(Satyendra Nath Bose,1894年1月1日—1974年2月4日) ,印度物理学家,专门研究数学物理。
萨特延德拉·纳特·玻色最着名的研究是1920年代早期的量子物理研究,该研究为玻色-爱因斯坦统计及玻色-爱因斯坦凝聚理论提供了基础。玻色子就是以他的名字命名的。
着名物理学家贾因特·纳里卡(Jayant Narlikar)在他的《科学边缘》一书中写道:“S·N·玻色的粒子物理研究(约1922年),其中阐明了光子的表现,并为统计遵从量子规则的微系统提供了机会,是二十世纪印度科学贡献的前十名之一,是可被视为诺贝尔奖级别的研究。”
生平情况
早年玻色生于印度西孟加拉邦的加尔各答,是七名孩子中的长子。他的父亲苏伦特拉纳特·玻色(Surendranath Bose)曾任职于东印度铁路工程部。
玻色就读于加尔各答印度教学校(Hin School),后就读于也位于加尔各答的院长学院(Presidency College),他在这两所当地知名学府时都获得了最高分。他接触了一些优秀的老师,如贾加迪什·钱德拉·玻色(Jagdish Chandra Bose,无血缘关系)及普拉富尔拉·钱德拉·罗伊(Prafulla Chandra Roy),他们都鼓舞了玻色要立好远大志向。他于1911年至1921年任加尔各答大学物理学系讲师。他于1921年转到了当时成立不久的达卡大学物理学系(现位于孟加拉境内),也是任职讲师。
玻色写给爱因斯坦的信
玻色于1924年写了一篇推导普朗克量子辐射定律的论文,当中并没有提到任何古典物理。在开始时未能发表的挫折下,他把论文直接寄给身在德国的艾尔伯特·爱因斯坦。爱因斯坦意识到这篇论文的重要性,不但亲自把它翻译成德语,还以玻色的名义把论文递予名望颇高的《德国物理学刊》("Zeitschrift für Physik")发表。就是因为此次赏识,玻色能够第一次离开印度,前往欧洲并逗留两年,期间与路易·德布罗伊、居里夫人及爱因斯坦工作过。
玻色于1926年回到达卡,任教授兼物理学系主任,并继续留在达卡大学教学至1945年。那时候他回到了加尔各答,在加尔各答大学教学至1956年,他退休时被授予名誉教授头衔。
以后的研究
在这以后玻色的概念在物理学界广受好评,达卡大学于1924年允许他休假到欧洲去。他在法国度过了一年,跟居里夫人共事,也跟多位知名科学家见过面。之后他又多游学一年,在柏林跟爱因斯坦共事。在1926年他回到达卡大学之后,就立即于被擢升为教授。他并没有博士学位,一般来说他是不够资格当教授的,但是爱因斯坦还是推荐了他。他的研究范围很广,从X射线晶体学到统一场理论都有涉猎。他还跟梅格·纳德·萨哈(Megn Nad Saha)一起发表了真实气体用的一条状态方程。
1949
除物理以外,他还研究过生物化学及文学(孟加拉语及英语)。他还深入地学习过化学、地质学、动物学、人类学、工程学及其他科学。作为一个有孟加拉背景的人,他花了不少时间把孟加拉语推广为教学语言,把科学论文翻成孟加拉语,以及推广该地区的发展。
玻色于1944年被选为印度科学代表大会主席。
他于1958年获选为英国皇家学会会员。
没错的错误
有一次玻色在达卡大学讲课,课题是光电效应及紫外灾难,玻色打算向学生展示当时理论的不适之处,因为理论预测的结果跟实验不符。在讲课期间,玻色在应用理论时犯了错,意想不到的是居然得出一个跟实验一致的预测。(他后来将讲课内容改写成了一篇短文,叫《普朗克定律与光量子假说》。)
那错误是一个很简单的错──跟认为掷两枚硬币得两正面的概率是三分之一是一样的──任何对统计学有一点基础理解的人都知道有问题。然而,预测结果跟实验吻合,且玻色意识到这毕竟有可能不是错误。他首次提出麦克斯韦-玻尔兹曼分布对微观粒子不会成立,这是因为由海森堡测不准原理所导致的变动此时会大得足够构成影响。故此他强调在每个体积为h的位相空间中找到粒子的概率而舍弃粒子不同的位置和动量。
好几份物理学刊都没有为玻色发表论文。他们认为他所展现的是一个简单错误,而且玻色的发现被忽略了。灰心的他写了封信给爱因斯坦,爱因斯坦马上就同意他的观点。爱因斯坦写了一篇支持玻色理论的论文,递予《德国物理学刊》发表,并要求把这两篇论文一同发表,这时候玻色的理论终于受到推崇。这是1924年的事。玻色早前曾经把爱因斯坦的广义相对论论文从德语翻译成英语。有人说玻色把爱因斯坦当成他的“祖师”。
玻色的“错误”能得出正确结果,这是因为光子们是不能被分辨出来的,也就是不能把任何两个同能量的光子当作两个能被明确识别的光子。比方说,如果在另一个宇宙里,硬币表现得像光子及其他玻色子一样,掷出两正的概率会的而且确是三分之一(正反=反正)。玻色的“错误”现在被称为玻色-爱因斯坦统计。
爱因斯坦采取了这个概念,并把它延伸到原子去。这为预测某个现象的存在铺好了路,这个现象就是现在的玻色-爱因斯坦凝聚,在这现象中一组高密度的玻色子(自旋为整数的粒子,以玻色命名)在超低温状态中会成为玻色-爱因斯坦凝聚体,于1995年被实验所证实。
轶事
1.有一次大科学家尼尔斯·玻尔正在讲课。玻色列席。讲课者讲着讲着,中途在解释某一点时有难处。他一直都在黑板上写着;他停下来,转向玻色,问道,“玻色教授能帮我个忙吗?”讲课期间萨特延德拉都在闭着眼坐着。听众们都忍不住向玻尔教授的话报以微笑。令他们惊奇的是,玻色张开了眼睛;一下子就把讲课者的难题给解决了。之后他坐下来又把眼睛闭上了!
2.1927年在意大利科莫举行了科莫会议,除了爱因斯坦、薛定谔和狄拉克以外,当代最着名了物理学家,包括玻尔、海森堡、普朗克、洛伦兹、德布罗意等都出席了。但是玻色却没有能够出席,原因很离奇。因为当时大会向远在印度的玻色教授发出了邀请函,寄往了加尔各答大学,署名“寄给加尔各答大学的玻色教授”。但是当时玻色已经离开加尔各答大学去了达卡大学,而加尔各答大学还有一位姓玻色,全名叫做D.M.玻色的教授,而当时的通讯并不如现在发达,于是这位名不见经传的玻色就代替了当时已经很有名望的S.N.玻色,参加了众星云集的科莫大会。
玻色–爱因斯坦凝聚 (Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工学院的沃夫冈·凯特利与科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的铷原子在170 nK的低温下首次获得了玻色-爱因斯坦凝聚。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。
理论
所有原子的量子态都束聚于一个单一的量子态的状态被称为玻色凝聚或玻色-爱因斯坦凝聚。1920年代,萨特延德拉·纳特·玻色和阿尔伯特·爱因斯坦以玻色关于光子的统计力学研究为基础,对这个状态做了预言。
2005年7月22日,乌得勒支大学的学生罗迪·玻因克在保罗·埃伦费斯特的个人档案中发现了1924年12月爱因斯坦手写的原文的草稿。玻色和爱因斯坦的研究的结果是遵守玻色-爱因斯坦统计的玻色气体。玻色-爱因斯坦统计是描写玻色子的统计分布的理论。玻色子,其中包括光子和氦-4之类的原子,可以分享同一量子态。爱因斯坦推测将玻色子冷却到非常低的温度后它们会“落入”(“凝聚”)到能量最低的可能量子态中,导致一种全新的相态。
发现
1938年,彼得·卡皮查、约翰·艾伦和冬·麦色纳(Don Misener)发现氦-4在降温到2.2 K时会成为一种叫做超流体的新的液体状态。超流的氦有许多非常不寻常的特征,比如它的黏度为零,其漩涡是量子化的。很快人们就认识到超液体的原因是玻色-爱因斯坦凝聚。事实上,康奈尔和威曼发现的气态的玻色-爱因斯坦凝聚呈现出许多超流体的特性。
“真正”的玻色-爱因斯坦凝聚最早是由康奈尔和威曼及其助手在天体物理实验室联合研究所于1995年6月5日制造成功的。他们使用激光冷却和磁阱中的蒸发冷却将约2000个稀薄的气态的铷-87原子的温度降低到170 nK后获得了玻色-爱因斯坦凝聚。四个月后,麻省理工学院的沃尔夫冈·克特勒使用钠-23独立地获得了玻色-爱因斯坦凝聚。克特勒的凝聚较康奈尔和威曼的含有约100倍的原子,这样他可以用他的凝聚获得一些非常重要的结果,比如他可以观测两个不同凝聚之间的量子衍射。2001年康奈尔、威曼和克特勒为他们的研究结果共享诺贝尔物理奖。
康奈尔、威曼和克特勒的结果引起了许多试验项目。比如2003年11月因斯布鲁克大学的鲁道尔夫·格里姆、科罗拉多大学鲍尔德分校的德波拉·金和克特勒制造了第一个分子构成的玻色-爱因斯坦凝聚。
与一般人们遇到的其它相态相比,玻色-爱因斯坦凝聚非常不稳定。玻色-爱因斯坦凝聚与外界世界的极其微小的相互作用足以使它们加热到超出临界温度,分解为单一原子的状态,因此在短期内不太有机会出现实际应用。
2016年5月17日,来自澳大利亚新南威尔士大学和澳大利亚国立大学的研究团队首次使用人工智能制造出了玻色-爱因斯坦凝聚。人工智能在此项实验中的作用是调节要求苛刻的温度和防止原子逃逸的激光束。
我们知道,常温下的气体原子行为就象台球一样,原子之间以及与器壁之间互相碰撞,其相互作用遵从经典力学定律;低温的原子运动,其相互作用则遵从量子力学定律,由德布罗意波来描述其运动,此时的德布罗意波波长λ小于原子之间的距离d,其运动由量子属性自旋量子数来决定。我们知道,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。
玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而费米子具有互相排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子就是典型的费米子。
早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。此时,所有的原子就象一个原子一样,具有完全相同的物理性质。
根据量子力学中的德布洛意关系,λ=h/p。粒子的运动速度越慢(温度越低),其物质波的波长就越长。当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,此时,物质波之间通过相互作用而达到完全相同的状态,其性质由一个原子的波函数即可描述; 当温度为绝对零度时,热运动现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。
5. 拉曼的生平事迹是怎样的
拉曼(1888—1970),印度物理学家。因光散射方面的研究工作和“拉曼效应”的发现,获得1930年诺贝尔物理学奖。
拉曼出生在印度马德拉斯的提鲁契腊帕里,父亲是教会学校的教师,讲授数学和物理。在英国殖民统治下,拉曼的家庭并不被人尊重,但他才智出众,成了当地的小名人。
14岁那年,因为他聪明好学,地方当局推荐他上马德拉斯学院。院方见到前来报到的小孩,还以为地方上的公文搞错了。拉曼在入校考试中名列前茅,以优异的成绩踏进了学院大门。两年后他取得了文学学士学位和优秀学生奖章。又过了两年,他获得了硕士学位。
进入大学不久,他对光学和声学产生了浓厚兴趣。他的第一篇论文发表在1906年伦敦出版的《哲学月刊》上,题目是《论光束的散射》。大学毕业后,他想留校当助教,却遭到了学校董事会的反对。因为当时印度大学的教师差不多全由英国人担任,印度本土培养出来的大学生被人瞧不起。为了谋生,拉曼不得不改行当书记官。19岁那年,拉曼战胜了大批竞争者,被印度总督府财政部录取为事务员。尽管这个职业很不称心,但他工作得很认真,俨然是个非常称职的小职员,可他的心却始终牵挂着既定的科学目标。几年间,他曾到好几个城市,不论何处,他都兢兢业业,还千方百计地到当地的实验室去进行课题研究。为了工作和研究两不误,他不得不抓紧生活,对时间的安排精确到了每一天的每一分钟。
拉曼在政府机关整整工作了10年,仕途上没长进,但他矢志不渝地坚持着自己的业余爱好,在光学和声学上的研究取得了惊人的进展。他曾于1907年在印度科学开发委员会的第一期学报上发表了题为“惠更斯次波的实验研究”的论文。在此后的7年中,这份学报不断地刊登他的论文。1912年他获得了柯曾研究奖,1913年他又荣获伍德伯恩研究奖章。由于印度当时是英国的殖民地,印度人倍受歧视,拉曼的研究成果当然遭到了冷遇。他的《光束传播论》在法国物理学会季刊上发表后,才引起各国学者的关注。
拉曼的《一种新的辐射》首次指出散射光中有新的不同波长成分,它和散射物质的结构有密切关系。这个现象后来被称为“拉曼效应”。此外,在振动、声音、乐器、超声学、衍射、气象光学,胶体光学、光电学和X射线衍射等领域,拉曼也都做出了重大贡献。
6. 印度超级数学天才拉马努金是不是一个可以超越爱因斯坦的神人
印度超级数学天才拉马努金是不是一个可以超越爱因斯坦的神人?
印度的数学家拉马努金与爱因斯坦不是一个级别的人,他仅仅只是印度人自己的自吹自擂一种意淫,是印度人心目中的神。而爱因斯坦是世界上公认的物理学巨匠,世纪伟人,现代物理学奠基人。【爱因斯坦,1879年3月14日—1955年4月18日,出生于德国,毕业于苏黎世联邦理工学院,犹太裔物理学家】。自爱因斯坦建立相对论之后,推翻了牛顿的绝对时空观,量子力学则改变了人类对物质结构及其相互作用的理解,人类认识到微观世界不再呈现宏观世界的准确性,而是变成了测不准原理。现如今相对论和量子力学已经诞生了一个多世纪,物理学却再也没有出现过“颠覆性”的理论。
1000年来印度人认为的最伟大的数学家,拉马努金(1887年12月22日-1920年4月26日)是印度 历史 上最着名的数学家。
印度的拉马努金,少年时期的拉马努金让人敬而远之;拉马努金的中学同学在回忆他时说:我们包括老师在内完全不能了解他。确实,当时拉马努金的表现太不寻常了,他可以将圆周率π和自然指数e的小数点后上百位都背下来,考试只需一半的时间就交卷,校长在颁奖礼上介绍了拉马努金时说,满分根本不足以评判他的成绩,对拉马努金而言,数学符合是他最美的语音 ;为了证明5000个方程,在大学里除了数学以外,所有科目都不及格。人人都认定拉马努金是天才,但是在冷酷制度下,这个天才却无法在任何一所南印度大学里拿到学位。不仅拿不到奖学金,而且还被学校开除。
虽然未受过严格的数学训练,他却独立发现了近3900个数学公式和命题;它他所遇见的数学命题,在后来有许多得到了证实;其直觉跳跃甚至令今天的数学家感到迷惑。一个未经过训练的天才,成为了他的时代中最伟大数学天才之一;拉马努金的数学成就,在后来的计算机科学、电气工程、数学和物理等许多领域的发展产生了深远意义和影响。为了纪念拉马努金对数学的贡献,印度总理辛格宣布,其诞辰为“印度数学日”,印度人把他和圣雄甘地、诗人泰戈尔等等人称作印度之子。
印度超级数学天才拉马努金是不是一个可以超越爱因斯坦的神人?
在世界数学史上有一位近乎天才级别的印度数学家,但又英年早逝让数学界扼腕叹息,大家肯定猜到了,这就是被印度称为一千年以来最伟大的数学家:拉马努金!
他对数学几乎就是无师自通,各种莫名其妙的神级公式睡一觉就直接能写出来,假如大梵天主能保佑他长命百岁,他对科学界的贡献能超越爱因斯坦吗?
拉马努金有哪些世界级的贡献
1913年,就职于剑桥大学的顶尖数学家哈代收到了一封来自印度一位叫做拉马努金给他的信件,他并不清楚写这封信的是谁,而信中则列出一大堆已经被证明过公式,哈代本想随手就丢弃,但当天他并没有这样做,而是仔细的看了这封信的作者的证明过程!
这一仔细差点改变了世界,信中陈述了作者对素数分布的研究,并列出了120多条公式,尽管大部分已经被证明,但要独立完成这些证明是一件非常困难的事情,而有其中部分,哈代自己要证明也绝非易事!哈代很快确信这拉马努金不简单,至少也是一个不可多得数学人才,因此他邀请拉马努金来到英国!
拉马努金其人
拉马努金出生于1887年,印度南部库姆巴科纳姆的一座小城,他没有接受过正规的数学教育,除了数学之外,其他课程学得一塌糊涂,但他对数学有着常人难以企及的直觉,后来戈弗雷·哈代说拉马努金是在“对现代欧洲数学家完全无知”中学习的!
也就是说他写给哈代信中提到的公式,几乎都是他发现的,因为19世纪的印度南部小城,尽管东印度公司已经渗透到了印度 社会 的方方面面,但他们只是来赚钱的,拉马努金距离正规的欧洲学术界是在有些遥远!
哈代和拉马努金
1913年拉马努金就接到了哈代来自剑桥大学的邀请,但他作为婆罗门信徒,对离开印度感到非常抽搐,一直到1914年4月拉马努金才动身前往英国!哈代发现,拉马努金无知到可怕,由于偏科严重,中学未毕业,对现代欧洲数学一无所知,比如于变量的增量、柯西定理根本不熟悉,但他也同时发现,拉马努金的对于数学有着异于常人的敏锐洞察力,对于数值和组合、连分数、发散级数及积分、数的分拆、黎曼ξ函数和各种特殊级数却有深度的理解。
在哈代和他好友李特尔伍德安排倾尽心血教授下,5年时间里拉马努金发表了21篇顶尖的数学论文,在整数分拆问题作出了惊人的解决,首创了正整数n的分拆数p(n)的渐近公式!在素数分布、堆垒数论、广义超几何级数、椭圆函数、发散级数等领域都取得了突破!
拉马努金去世
拉马努金是一个严格的素食主义者,这导致他身材瘦小,哈代认为这和后来拉马努金患上肺结核并且数年后去世有很大的关系,肺结核病人对营养的需求很大,比较适合营养丰富的高蛋白、高热量的食物,而拉马努金的素食严重影响了营养摄入,这和他在1917年5月患病,1920年4月就去世有着很大的关系!拉马努金这个天才,享年才33岁!
哈代和科学界对拉马努金的评价
1936年哈代有一篇关于《印度数学家拉马努金》的演讲,对其的评价也可以成为是数学界对拉马努金的肯定!
数学家希尔伯特曾经回答过一个有趣的问题,1900年世界数学大会上列出了23个数学难题,有人问希尔伯特为什么不去解决这些问题?希尔伯特回答说他不会杀死这些下金蛋的鹅,为什么希尔伯特有这说法,这是因为无数的数学家研究与证明这些公式养活大半个数学界!
希尔伯特
拉马努金就是这样一个下了无数金蛋的鹅,拉马努金除了发表的正式论文外,在他的手稿中留下了超过3000个莫名其妙的公式,而到现在为止大约只有200个被整理出来,而令人汗颜的是拉马努金的部分公式居然在他去世后的半个世纪如火如荼开展研究的弦论中发挥了重要的作用。
科学的发展需要数学理论的突破,数学从最初的解决现实问题,到后来解决物理前沿问题,再后来开始解决数学本身问题,因为随着现代科学的发展,它们迟早将会被应用到各种物理前沿理论中去,比如欧拉β函数以及泊松括号和哈密顿函数就在量子力学中解决了大问题!
那么谁又能知道拉马努金还未被发掘的金矿中,又有哪些公式可以应用到未来的暗物质、暗能量以及黑洞的构造与多维宇宙的秘密呢?
拉马努金数学笔记中的两页
对拉马努金感兴趣的朋友可以去看看马特·布朗执导的拉马努金传记电影《知无涯者》。拉马努金这颗神奇的脑袋去世得太早是最大的问题!
33岁以前,爱因斯坦完成了哪些科学成就?
爱因斯坦在成名以前,和拉马努金一样名不见经传!不一样的是爱因斯坦接受过正规的教育,而且以优秀的成绩毕业了,很多谣传爱因斯坦小时候成绩不好的朋友也可以闭嘴了,因为爱因斯坦的成绩会让大部分朋友汗颜!
爱因斯坦中学毕业成绩单
1905年时,爱因斯坦结合众多先行科学家的成果中提出了狭义相对论,这篇颠覆性的论文发表后立即在科学界引起了大讨论,狭义相对论用到的数学不复杂,尽管它在主流科学界的接受需要一些时间,但并不影响它在科学家中如野草般的生长,因为狭义相对论揭示了宇宙的部分真相!
这一年爱因斯坦26岁!
如果到此为止爱因斯坦再无建树其实也已经足够了,但爱因斯坦显然不满足于此,因为狭义相对论是在理想的状态下推导的结果,而整个宇宙显然不是这种特例!在狭义相对论推出后十年的时间里,爱因斯坦将这种特例推广到了任何条件下都适用的广义相对论!
1916年爱因斯坦发表了1915年已经完成的广义相对论,而引力场公式则在1915年底就在德国某次大学的演讲时就已经发表了,广相对于科学界的冲击犹如一颗核弹,当然那会还没有核弹这个东西!
要说狭义相对论,从经典力学时代走过来的传统科学家还能稍稍理解一下的话,在广相面前直接就昏迷不醒了,不管时间还是空间,再也不是我们熟悉的那个描述,宇宙也再也不是牛顿经典力学中平直宇宙,而是处处充满陷阱,甚至连时间都不一致的宇宙!
这一年,爱因斯坦36岁!
狭义和广义相对论是爱因斯坦最伟大的两项成果,但可能各位不知道的是爱因斯坦在光电理论和分子运动以及统计力学和量子力学中都有着高山仰止的成就!这一点跟牛顿相比还真有些相似之处,局限于时代,牛顿是一位炼金术和神秘论主义的狂热爱好者,他在炼金术上的笔记要比科学上的着作多得多,科学不过是牛顿的业余爱好而已!
而爱因斯坦则是四面开花,很多朋友可能诟病爱因斯坦在后来如火如荼发展的量子力学上成了绊脚石,但其实如果没有爱因斯坦给波尔的鸡蛋里挑骨头,相信量子力学的远没有现在那么完备!当然即使到现在量子力学仍然没有完备!
从科学的角度来看,爱因斯坦和拉马努金完全没有可比性,这一点爱因斯坦自己对于数学的理解上就可见一斑:
数学和其他科学性质上的不同,表明了两者的互相不可替代性,更准确的说,爱因斯坦和拉马努金根本就不能放在一起相比较!爱因斯坦的伟大是毋庸置疑的,而拉马努金则有无限的潜力,只是可惜,33岁就被湿婆召唤了!
两个人都是神,但不是同一个类型的,最好不要硬比。
拉马努金是印度数学家。在圆周率和一些计算数学(算数)领域有很大贡献。但是其牛逼程度还比不上高斯、欧拉、希尔伯特、牛顿、伯努利家族等这些人。他在数学上有一席之地。
爱因斯坦则是物理学上一座难以逾越的丰碑,可以与之媲美的只有阿基米德和牛顿二人。这三人是开创性大神。
拉马努金和爱因斯坦是不同领域的两位仙。要论二人在各自领域的地位谁高,显然是爱因斯坦高的多。如果用道教中的神来比拟,爱因斯坦相当于四方之神,几乎是最高神了。而拉马努金大约相当于某个地区的神仙,比方说类似于托塔李天王,守护着三江口,很厉害,但还有更厉害的诸多大神。这只是比喻,任何一位数学家都很厉害。
当然,爱因斯坦尽管地位很高,但他的数学似乎不太好,相对论需要一门数学分支叫“微分几何学”,他大学时没学好,这差点影响他获得最后的相对论方程。爱因斯坦的牛在于“思想能力”,他几乎用纯粹思辨的方式,看透了物质、时空、运动的深邃真理。可以说,他透支了人类科学的几百年发展成果。自他以后,人类几乎再没有取得什么像样的科学理论成果。除了杨振宁的“宇称破缺理论”,大约可以算是一个比较重要的理论成果。近百年取得的科学成果基本都仅仅是“技术成果”。
不是!
一)《天才数学家拉马努金》
2016.7.30
施里尼瓦萨·拉马努金出生于印度南部一个偏僻小镇(1887年12月22日-1920年4月26日 ,终年32岁死于肺结核病.)
2016年4月.俄罗斯着名投资人尤里·米尔纳在自己家中举行了一场小规模的晚宴,到场嘉宾包括Google CEO皮查伊,Google创始人布林,Facebook创始人兼CEO扎克伯格及其他数十位硅谷领袖.在晚宴上,米尔纳放映了一部导演马修·布朗最新拍摄的传记体电影——《知无涯者》.影片讲述了印度传奇数学家拉马努金的一生.
这位非凡的天才数学家施里尼瓦萨.拉马努金(1887.12.22~1920.4.26)生命灵魂己经重回人间投胎成了极优秀的数学家陶哲轩(1975年7月17日出生在澳大利亚阿德莱德,现任教于美国加州大学洛杉矶分校(UCLA)数学系)
所以他是为了上一世未曾完成的心愿而努力今生.前世的他缺少学院式的专业训练,却完成了影响人类文明发展的多项数学定理.而今世的他受过最严格的学院式正规训练又一次成了着名数学家(还是地球人类专业数学家里大脑iq最高的人)再来挑战新的数学高峰.
只是他尚未获得大脑神经系统的超级进化,这从他现今的大脑神经系统运算最高速度只有1200次/秒即可知.故他将面临着多项数学难题的挑战而难以过关.这也算是他今世人生的进化攻关课题了.
如果什么事都容易的话,讲进化生命也就是不存在的事了.
人生正是以挑战看起来的不可能而达目标才是生命实现进化的真正证据.
人间古往今来,所有的卓越成就者都证明了此项规律.
所以不论是你还是我,或是陶哲轩都得在现实中真的做到这项法则,才是自已今世的生命进化得以实现.不然都最多只是自我安慰而已.
"做到原先看起来不可能做到的事"也是每位希望进化自已生命者此生的攻关难题.但是人间的正常人都一生进化几乎看不出有什么长进的原因却是---尽干一看就知道是容易做得到的事.例,就为了娶妻生儿女,买房买车再升个职加点工资什么的.这类没难度更没 科技 的事对灵魂智慧与光球智慧的成长都是微小到可以忽略不计的地步.却是大量的人当成了自已一生奋斗的目标!所以与生命进化实在扯不上毛关系.难怪正常人的大脑显意识智商从长大成人到退休时从未实现过1%的增长,事实上许多人到退体年龄时的大脑智商却是全都倒退了.生命活成了---倒退模式.
还有那些富二代,富三代中的一些缺脑子的人,不知利用已有的优势资源为自己生命进化提供帮助,却尽干努力耗光自已财富的事,让生命尽快终结了事,更愚痴的就投身到吸毒专业户中奋斗终身去了.那位在33岁就被暴毙的大帅哥迪拜王子就是这种人的代表人物.
更不用说太多的人还没到退休年龄其全身己被疾病纠上不离又不弃了.然后还自作聪明地将责任推卸给工作太累或家庭负担太重才使身体患病这种连鬼都不信的理由.
而"不达目的,誓不罢休"才是希望不做正常人的最应当拥有的人格特征.若缺少这种人格特征,那么讲进化自已只能是水中抓月了.至少我是从没见过水中可以抓到月的,抓鱼却是容易的事!
宇宙中还有一项法则:一切容易的事都是留给生命要退化的人!
否则世上哪来的"逆水行舟,不进则退!"而流传千古不衰?
更令人难以至信的却是拉马努金的灵魂曾经在前世投胎就是非常了不起的天才数学家约翰·卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日),德国着名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一!
二)《天才数学家高斯的轮回》
2019.3.25
有人问数学家高斯的成就与物理学家爱因斯坦的成就相比谁更大?
我是认为他们的成就完全相当,而且这是高斯与爱因斯坦各自在数学与物理领域最了不起的对人类文明的卓越贡献均已载入史册.
当然重点更是出人意料之外了-----高斯在1855年2月23日逝世之后其拥有的二位生命灵魂之一却被导演精心安排而在1878年5月投胎成了爱因斯坦,然后他就于1879年3月14日在德国成功无误地出生了!
高斯另一生命灵魂就被安排到印度投胎成了施里尼瓦萨·拉马努金(出生于印度南部一个偏僻小镇1887年12月22日-1920年4月26日)
即:
高斯的二位生命灵魂=爱因斯坦+拉马努金
这个等式在宇宙十维空间里的宇宙信息中心(宇宙数据库)中就有十分详细完整的记载了高斯生命灵魂在地球人间的轮回历程.毕竟他是个非常了不起的数学家耶.
不过另一更容易让人不愿相信的事实却是:爱因斯坦的生命灵魂又被导演安排重返人间做人了,只不过这次他是成功地做成了中国人!现今他就在北京的某高中做为十分优秀不凡的高中学生而已.
天才数学家施里尼瓦萨.拉马努金(1887.12.22~1920.4.26)生命灵魂也己经被安排重返人间投胎成了极优秀的数学家陶哲轩(1975年7月17日出生在澳大利亚阿德莱德,现任教于美国加州大学洛杉矶分校(UCLA)数学系)
并不是的,拉马努金是一位伟大的数学天才是毋庸置疑的。他有着无与伦比的数学天赋。但是这个和爱因斯坦的成就相比,还差了几个档次的。
科学界公认的第一第二就是牛顿和爱因斯坦。
比如牛顿,不仅仅是在在数学方面提出了微积分。更是提出了牛顿力学一套自己完全独立的全新的力学体系。以及其他非常多的具有开创性的成果。
爱因斯坦同样也是,如果仅仅是因为光电效应获得诺贝尔奖,那么爱因斯坦顶多算是个优秀的科学家。但是他最大的成就就是他提出的全新的独创的相对论理论。
同样,作为牛顿和爱因斯坦统一级别的大佬,还有泡利,普朗克,等等开创了量子力学等伟大的科学家。包括中国的杨振宁先生他的举世闻名也不是因为获得了诺贝尔奖的宇称不守恒理论,而是他的杨米尔斯规范场理论。这也是具有开创性指导性的理论体系。
再比如,我们中国人特别熟悉的伟大的黑洞理论物理学家霍金。他就比以上的大佬要低上一个层次,但是也是一位伟大的物理学家。只不过相比于上面的大佬的开创性成果,他的很多理论,尤其是最着名的霍金辐射都是建立在了黑洞理论上。但是黑洞理论也不是霍金的成果。所以比上面的大佬就要差很多。
在说回拉马努金。一个不折不扣的天才。但是他是一个伟大的数学天才,严格来说,不是一个伟大的科学家。
如果真的要去比较是否厉害的,不如何费马比一比。不过数学谁厉害,这个我是不太了解的。
各种古今天文学家;
多样中外地理高人;
拉马努金名世知少;
没法超过爱因斯坦。
他是数学中专攻数论这类的人才
7. 你认为最伟大的印度人是谁
莫罕达斯·卡拉姆昌德·甘地,被尊称为“圣雄甘地”,是印度民族解放运动的领导人和印度国家大会党领袖。他的精神思想带领国家迈向独立,脱离英国的殖民统治。他是现代印度的国父,是印度最伟大的政治领袖,是现代民族资产阶级政治学说甘地主义的创始人。