❶ 有关太阳系的资料
太阳系的领域包括太阳,4颗像地球的内行星,由许多小岩石组成的小行星带,4颗充满气体的巨大外行星,充满冰冻小岩石,被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面和太阳圈,和依然属于假设的奥尔特云。
依照至太阳的距离,行星序是水星、金星、地球、火星、木星、土星、天王星、和海王星,8颗中的6颗有天然的卫星环绕着,这些星习惯上因为地球的卫星被称为月球而都被视为月球。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名,在西方则全都以希腊和罗马神话故事中的神仙为名。三颗矮行星是冥王星,柯伊伯带内最大的天体之一,谷神星,小行星带内最大的天体,和属于黄道离散天体的阋神星。
概述和轨道
太阳系内天体的轨道太阳系的主角是位居中心的太阳,它是一颗光谱分类为G2V的主序星,拥有太阳系内已知质量的99.86%,并以引力主宰着太阳系。木星和土星,太阳系内最大的两颗行星,又占了剩余质量的90%以上,目前仍属于假说的奥尔特云,还不知道会占有多少百分比的质量。
太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道)的附近。行星都非常靠近黄道,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度。
由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体,都以逆时针(右旋)方向绕着太阳公转。有些例外的,像是哈雷彗星。
环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点,并且越靠近太阳时的速度越快。行星的轨道接近圆型,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。
在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如,金星在水星之外约0.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外10.5天文单位。曾有些关系式企图解释这些轨道距离变化间的交互作用,但这样的理论从未获得证实。
形成和演化
艺术家笔下的原行星盘
太阳系的形成据信应该是依据星云假说,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有超新星爆炸的心脏部分才能产生这些元素,所以包含太阳的星团必然在超新星残骸的附近。可能是来自超新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触发了太阳的诞生。
被认定为原太阳星云的地区就是日后将形成太阳系的地区,直径估计在7,000至20,000天文单位,而质量仅比太阳多一点(多0.1至0.001太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转速加快,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热。当重力、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘,而直径大约200天文单位,并且在中心有一个热且稠密的原恒星。
对年轻的金牛T星的研究,相信质量与预熔合阶段发展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位,并且最热的部分可以达到数千K的高温。
一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。
相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生:
·当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长;
·然后经由直接的接触,聚集成1至10公里直径的丛集;
·接着经由碰撞形成更大的个体,成为直径大约5公里的星子;
·在未来得数百万年中,经由进一步的碰撞以每年15厘米的的速度继续成长。
在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。
在更远的距离上,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。
一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多。
根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10%。
从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一个红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。
随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。
[编辑本段]结构和组成
太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统,
太阳系的结构可以大概地分为五部分:
太阳
太阳是太阳系的母星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的型式,例如可见光,让能量稳定的进入太空。太阳在赫罗图上的位置
太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的。通常,温度高的恒星也会比较明亮,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,但是比太阳大且亮的星并不多,而比较暗淡和低温的恒星则很多。
太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。
计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将离开主序带,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。
太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属。)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键,因为行星是由累积的金属物质形成的。
行星际物质
除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的速度为每小时150万公里,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。 太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。
地球的磁场从与太阳风的互动中保护着地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。 太阳风和地球磁场交互作用产生的极光,可以在接近地球的磁极(如南极与北极)的附近看见。
宇宙线是来自太阳系外的,太阳圈屏障着太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。
行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在10-40天文单位的范围内,可能是柯伊伯带内的天体在相似的互相撞击下产生的。
内太阳系
内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。
内行星所有的内行星
四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔,以及由铁、镍构成的金属核心所组成。四颗中的三颗(金星、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向
水星
水星(Mercury)(0.4 天文单位)是最靠近太阳,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊。 水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长。
金星
金星 (Venus)(0.7 天文单位)的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此认为金星的大气是经由火山的爆发获得补充。
地球
地球(Earth)(1 天文单位)是内行星中最大且密度最高的,也是维一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜。)
火星
火星(Mars)(1.5 天文单位)比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。
小行星带
小行星的主带和特洛伊小行星 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成。
主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3 天文单位,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。
小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体,但是有几颗小行星,像是灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重分类为矮行星。
小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的,所以至今还没有太空船在穿越时发生意外。
直径在10至10-4 米的小天体称为流星体。
谷神星
谷神星 (Ceres)(2.77 天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的引力已足以使它成为球体。它在19世纪初被发现时,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。
小行星族
在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大。
在主带中也有彗星,它们可能是地球上水的主要来源。
特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点),不过"特洛依"这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。
内太阳系也包含许多“淘气”的小行星与尘粒,其中有许多都会穿越内行星的轨道。
中太阳系
太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入"外太阳系",虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是"冰"(水、氨和甲烷),不同于以岩石为主的内太阳系。
外行星
所有的外行星 在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。
木星
木星(Jupiter)(5.2 天文单位),主要由氢和氦组成,质量是地球的318倍,也是其他行星质量总合的2.5倍。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗,甘尼米德、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大,是太阳系内最大的卫星。
土星
土星(Saturn)(9.5 天文单位),因为有明显的环系统而着名,它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,而且是太阳系中唯一实际拥有大气层的卫星。
天王星
天王星(Uranus)(19.6 天文单位),是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔、和米兰达。
海王星
海王星(Neptune)(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。
彗星
彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。
短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像是克鲁兹族彗星,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。 挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。
半人马群
半人马群是散布在9至30 天文单位的范围内,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体。半人马群已知的最大天体是10199 Chariklo,直径在200至250 公里。第一个被发现的是2060 Chiron,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续。
外海王星区
在海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。
柯伊伯带
柯伊伯带,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带,扩散在距离太阳30至50 天文单位之处。这个区域被认为是短周期彗星——像是哈雷彗星——的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61、2005 FY9和厄耳枯斯等,可能都会被归类为矮行星。估计柯伊伯带内直径大于50 公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。
柯伊伯带大致上可以分成共振带和传统的带两部分,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在39.4至47.7 天文单位范围内的天体。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名,被分类为类QB1天体。
冥王星和卡戎
冥王星和已知的三颗卫星 冥王星(Pluto)(平均距离39 天文单位)是一颗矮行星,也是柯伊伯带内已知的最大天体之一。当它在1930年被发现后被认为是第九颗行星,直到2006年才重分类为矮行星。冥王星的轨道对黄道面倾斜17度,与太阳的距离在近日点时是29.7天文单位(在海王星轨道的内侧),远日点时则达到49.5天文单位。
目前还不能确定卡戎(Charon),冥王星的卫星,是否应被归类为目前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星,尼克斯(Nix)与许德拉(Hydra)则绕着冥王星和卡戎公转。
冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈)。柯伊伯带中有着这种轨道的天体统称为类冥天体。
离散盘
离散盘与柯伊伯带是重叠的,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反复不定的轨道中。多数黄道离散天体的近日点都在柯伊伯带内,但远日点可以远至150 天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分,并且应该称为"柯伊伯带离散天体"。
此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。
太阳系是由受太阳引力约束的天体组成的系统,它的最大范围约可延伸到1光年以外。太阳系的主要成员有:太阳(恒星)、九大行星(包括地球)、无数小行星、众多卫星(包括月亮),还有彗星、流星体以及大量尘埃物质和稀薄的气态物质.在太阳系中,太阳的质量占太阳系总质量的99.8%,其它天体的总和不到有太阳的0.2%。太阳是中心天体,它的引力控制着整个太阳系,使其它天体绕太阳公转,太阳系中的九大行星(水星、金星、地球、火星、木星、土星、天王星、海王星、冥王星)都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转。
距离
(AU)
半径
(地球)
质量
(地球)
轨道倾角
(度)
轨道
偏心率
倾斜度
密度
(g/cm3)
太阳 0 109 332,800 --- --- --- 1.410
水星 0.39 0.38 0.05 7 0.2056 0.1° 5.43
金星 0.72 0.95 0.89 3.394 0.0068 177.4° 5.25
地球 1.0 1.00 1.00 0.000 0.0167 23.45° 5.52
火星 1.5 0.53 0.11 1.850 0.0934 25.19° 3.95
木星 5.2 11.0 318 1.308 0.0483 3.12° 1.33
土星 9.5 9.5 95 2.488 0.0560 26.73° 0.69
天王星 19.2 4.0 17 0.774 0.0461 97.86° 1.29
海王星 30.1 3.9 17 1.774 0.0097 29.56° 1.64
冥王星 39.5 0.18 0.002 17.15 0.2482 119.6° 2.03
❷ 太阳系天体地质概况
银河系是直径100000光年,拥有约2000亿颗恒星的棒旋星系。太阳位居银河外围的一条旋涡臂上,称为猎户臂或本地臂(图1-6)。太阳距离银核25000~28000光年,在银河系内的运动速度大约是220km/s,因此环绕银河公转一圈需要2.25亿~2.5亿年,这个公转周期称为银河年。
图1-6 太阳系在银河系中的位置
太阳系在银河系中的位置是地球上能发展出生命的一个很重要的因素,它的轨道非常接近圆形,并且和旋臂保持大致相同的速度,这意味着它相对旋臂是几乎不动的。因为旋臂远离了有潜在危险的超新星密集区域,使地球长期处在稳定的环境之中得以发展出生命。如果太阳系接近银河系恒星群居的中心,邻近恒星强大的引力对奥尔特云产生的扰动会将大量的彗星送入太阳系内,导致与地球的碰撞而危害到发展中的生命。银河中心强烈的辐射线也会干扰生命的发展。
太阳系由太阳和所有受到太阳引力约束的天体组成,包括太阳、8颗行星和至少165颗已知的卫星,以及数以亿计的太阳系小天体。根据到太阳的距离,8颗行星依次是水星、金星、地球、火星、木星、土星、天王星、海王星。离太阳较近的水星、金星、地球及火星称为类地行星,木星与土星称为近日行星,天王星与海王星称为远日行星。
(一)太阳系的形成和演化
关于太阳系的起源有许多假说,概括起来有星云说、灾变说、俘获说、戴文赛等等,还有所谓碰撞说、双星说、超新星说等。
1.星云说
最初的星云说是18世纪下半叶由德国哲学家康德和法国天文学家拉普拉斯提出来的,人们一般称之为康德-拉普拉斯星云说。他们认为:太阳系是由一块星云收缩形成的,先形成的是太阳,然后剩余的星云物质进一步收缩演化形成行星(图1-7)。
图1-7 星云说
康德-拉普拉斯星云说只是初步地说明了太阳系的起源问题,有许多观测事实难以用它来解释。所以,星云说在很长时间里陷入了窘境。直到20世纪,随着现代天文学和物理学的进展,特别是近几十年里,恒星演化理论的日趋成熟,星云说又焕发出了新的活力。
现代观测事实证明,恒星是由星云形成的。太阳系的形成在宇宙中并不是一个偶然的现象,而是普遍的、必然的结果。另外,关于太阳系的许多新发现也有力地支持了星云说。
2.灾变说
灾变说认为行星是某种偶然发生事件引起的剧变而形成的。
第一个灾变说是法国人G..L.L布丰于1745年提出的彗星说:认为一颗大彗星掠碰太阳使它自转起来,而碰出的太阳物质在绕转过程中形成了行星和卫星。它否定上帝创世,一度有相当影响(图1-8)。
图1-8 灾变说
3.俘获说
这种学说认为构成行星和卫星的物质是太阳形成后从太阳邻近区域俘获来的。前苏联科学家施米特1944年提出的陨星说认为,太阳在运行中穿过一个星际云,俘获了3%太阳质量的星际物质,这些物质逐渐形成行星和卫星。还有一些人,如爱尔兰的埃奇沃思、英国的彭德雷和威廉斯以及印度的米特拉等,提出了其他类型的俘获说,他们在描述图像和处理方法上存在着很大差别。提出俘获说的一个主要出发点是为了说明太阳系的形成(图1-9)。
图1-9 俘获说
4.戴文赛假说
1977年,我国着名天文学家戴文赛根据天文观测的实际资料并吸取各家假说之长,提出了关于太阳系形成的看法。其要点如下:
1)5亿年前星际物质因彼此吸引而收缩,形成一个旋转的原始星云团。原始星云团不断收缩,越转越快,并逐渐变扁。
2)原始星云最初的温度很低,为冰点以下200多摄氏度,由于收缩使大量引力势能转化为热能,使其温度逐渐升高。
3)原始星云收缩到大致为今天海王星轨道的大小时,其赤道处的旋转离心力大致等于星云本身对赤道处物质的吸引力,因此赤道处的物质便不再收缩,但星云内部还在继续收缩,最后就形成了一个周边较厚而中心较薄的旋转星云盘。
4)原始星云中大约97%的物质通过收缩而在星云盘的中心聚集成为太阳,其余物质中细微的固体质点通过相互碰撞和引力吸引聚集成为行星。
5)离太阳较近的区域因为温度高,原始物质中大部分挥发性物质几乎全部逃逸,剩下的是铁、硅、镁、硫及它们的氧化物,组成体积和质量较小、但密度较大的类地行星。离太阳较远的区域因为温度低,除了拥有类地行星物质以外还有大量的氢原子、氢分子、氦、氖等,以及氧、碳、氮及它们的氢化物,它们组成了体积和质量大但密度较小的木星和土星。离太阳最远的区域行星因受太阳的吸引力微弱,大部分逃逸,或所存很少,行星的体积、质量、密度约介于前两类行星之间。
6)由于太阳曾经抛射出部分带电物质并损失了角动量,而行星是由原始星云中最外面的物质形成的,这部分物质的角动量本来就很大,这就造成了太阳系角动量具有目前的分布特点。
(二)太阳系的结构和组成
太阳系大概可以分为五部分(图1-10)。
图1-10 太阳系(舒良树,2010)
1.太阳
太阳是太阳系最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量,并以辐射的形式,例如可见光,让能量稳定地进入太空。
太阳在分类上是一颗中等大小的黄矮星,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大、相当明亮的。
太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。
计算太阳内部氢与氦的比例,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将变得更大更明亮,但表面温度却降低,届时它的亮度将是目前的数千倍。
太阳是在宇宙演化后期才诞生的第一星族恒星,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键,因为行星是由累积的金属物质形成的。
除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风。这条微粒子流的速度为每小时150万千米,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。
地球的磁场与太阳风在互动中保护着地球大气层。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。太阳风和地球磁场交互作用产生的极光,可以在接近地球磁极的附近(如南极与北极)看见。
宇宙线来自太阳系外,太阳圈屏障着太阳系,行星的磁场也为行星自身提供了一些保护。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关,宇宙线在太阳系内的变动幅度究竟是多少?仍然是未知的。
图1-11 所有的内行星(Kutner,2003,有修改)
2.内太阳系
内太阳系传统上指类地行星和小行星带区域,现称为内行星(图1-11),主要是由硅酸盐和金属组成的。这个区域挤在靠近太阳的范围内,半径比木星与土星之间的距离还小。
四颗内行星或是类地行星的特点是高密度、由岩石构成、只有少量或没有卫星,没有环系统。它们由高熔点的矿物,如硅酸盐类,组成表面固体的地壳和半流质的地幔,由铁、镍构成金属核心。四颗中的三颗(金星、地球和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。行星在一个平面朝着一个方向运行。
水星(0.4天文单位) 是最靠近太阳,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期产生的皱折山脊。水星,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。相关假说包括巨大的冲击剥离了它的外壳,及年轻时期的太阳能抑制了外壳的增长等。
金星(0.7天文单位) 的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心。它的大气密度比地球高90倍而且非常干燥,没有天然的卫星。它是一颗炙热的行星,表面的温度超过400℃,很可能是大气层中有大量的温室气体造成的。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽,因此,认为金星的大气是由火山的爆发获得补充。
地球(1天文单位) 是内行星中最大且密度最高的,也是唯一地质活动仍在持续进行并拥有生命的行星。它拥有类地行星中独一无二的水圈和被观察到的板块结构。地球的大气与其他的行星完全不同,含有21%的氧气。它只有一颗卫星,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈1天(太阳并不是总是直射赤道,因为地球围绕太阳旋转时,稍稍有些倾斜)。
火星(1.5天文单位) 比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,有密集与巨大的火山、深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯,可能是被捕获的小行星。
小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成(图1-12)。
图1-12 小行星的主带和特洛伊小行星
主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3天文单位,它们被认为是在太阳系形成过程中,受到木星引力扰动而未能聚合的残余物质。
小行星的尺度大至数百千米,小至数微米。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体;但是有几颗小行星,像灶神星、健神星,如果能被证实已经达到流体静力平衡的状态,可能会被重新分类为矮行星。
小行星带拥有数万颗、可能多达数百万颗直径在1km以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员是稀稀落落的,所以至今没有太空船在穿越时发生意外。
3.中太阳系
太阳系的中部地区是气体巨星和它们如行星大小卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入“外太阳系”,虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是“冰”(水、氨和甲烷),不同于以岩石为主的内太阳系。
在外侧的四颗行星,也称为类木行星,囊括了环绕太阳99%的已知质量。木星(图1-3a)和土星(图1-3b)的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰”。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星”。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。
图1-13 木星(a)和土星(b)(Kunetr,2003)
木星(5.2天文单位) 主要由氢和氦组成,质量是地球的318倍,是其他行星质量总合的2.5倍。木星的丰沛内热给它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的有4颗:甘尼米德、卡利斯多、埃欧和欧罗巴,显示出类似类地行星的特征。甘尼米德比水星还要大,是太阳系内最大的卫星。
土星(9.5天文单位) 有明显的环系统。它与木星非常相似,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星,其中泰坦和恩塞拉都斯拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大,是太阳系中唯一实际拥有大气层的卫星。
天王星(19.6天文单位) 是最轻的外行星,质量是地球的14倍。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗,最大的几颗是泰坦尼亚、欧贝隆、乌姆柏里厄尔、艾瑞尔和米兰达。
海王星(30天文单位) 虽然看起来比天王星小,但密度较高,质量是地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它是太阳系内唯一逆行的大卫星。在海王星的轨道上有一些1:1轨道共振的小行星,组成海王星特洛伊群。
彗星 归属于太阳系小天体,通常直径只有几千米,主要由具挥发性的冰组成。它们的轨道离心率高,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外。当一颗彗星进入内太阳系后,与太阳的接近会导致冰冷表面的物质升华和电离,产生彗发,拖曳出由气体和尘粒组成、肉眼就可以看见的彗尾。
短周期彗星是轨道周期短于200年的彗星,长周期彗星的轨道周期可以长达数千年。短周期彗星,像哈雷彗星,被认为来自柯伊伯带;长周期彗星,像海尔·波普彗星,则被认为起源于奥尔特云。有许多群的彗星,像克鲁兹族彗星,可能源自一个崩溃的母体。有
些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。
4.外海王星区
冥王星(Pluto)和另外两颗很小的卫星尼克斯(Nix)与许德拉(Hydra),就位于这个区域。目前还不能确定卡戎(Charon)是否应归类为卫星还是矮行星(图1-14)。
图1-14 冥王星和已知的三颗卫星
海王星之外的区域,通常称为外太阳系或是外海王星区,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的1/5,质量则远小于月球),主要由岩石和冰组成。
5.最远的区域
太阳系于何处结束?以及星际介质开始的位置没有明确定义的界线,因为这需要由太阳风和太阳引力两者来决定。太阳风能影响到星际介质的距离大约是冥王星距离的4倍;太阳引力所能及的范围,应该是这个距离的千倍以上。
太阳圈的外缘是日球层顶,此处是太阳风最后的终止之处,外面即是恒星际空间。太阳圈外缘的形状和形式很可能受到与星际物质相互作用的流体动力学的影响。
我们的太阳系仍然有许多未知数。考量邻近的恒星,估计太阳的引力可以控制2光年(125000天文单位)的范围。奥尔特云向外延伸的程度,大概不会超过50000天文单位。尽管发现的塞德娜,范围在柯伊伯带和奥尔特云之间,仍然有数万天文单位半径的区域是未曾被探测的。水星和太阳之间的区域也仍在持续的研究中。
❸ 关于太阳系的资料
水星
水星最接近太阳,是太阳系中第二小行星。水星在直径上小于木卫三和土卫六,但它更重。
公转轨道: 距太阳 57,910,000 千米 (0.38 天文单位)
行星直径: 4,880 千米
质量: 3.30e23 千克
在古罗马神话中水星是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字。
早在公元前3000年的苏美尔时代,人们便发现了水星,古希腊人赋于它两个名字:当它初现于清晨时称为阿波罗,当它闪烁于夜空时称为赫耳墨斯。不过,古希腊天文学家们知道这两个名字实际上指的是同一颗星星,赫拉克赖脱(公元前5世纪之希腊哲学家)甚至认为水星与金星并非环绕地球,而是环绕着太阳在运行。
仅有水手10号探测器于1973年和1974年三次造访水星。它仅仅勘测了水星表面的45%(并且很不幸运,由于水星太靠近太阳,以致于哈博望远镜无法对它进行安全的摄像)。
水星的轨道偏离正圆程度很大,近日点距太阳仅四千六百万千米,远日点却有7千万千米,在轨道的近日点它以十分缓慢的速度按岁差围绕太阳向前运行(岁差:地轴进动引起春分点向西缓慢运行,速度每年0.2",约25800年运行一周,使回归年比恒星年短的现象。分日岁差和行星岁差两种,后者是由行星引力产生的黄道面变动引起的。)在十九世纪,天文学家们对水星的轨道半径进行了非常仔细的观察,但无法运用牛顿力学对此作出适当的解释。存在于实际观察到的值与预告值之间的细微差异是一个次要(每千年相差七分之一度)但困扰了天文学家们数十年的问题。有人认为在靠近水星的轨道上存在着另一颗行星(有时被称作Vulcan,“祝融星”),由此来解释这种差异,结果最终的答案颇有戏剧性:爱因斯坦的广义相对论。在人们接受认可此理论的早期,水星运行的正确预告是一个十分重要的因素。(水星因太阳的引力场而绕其公转,而太阳引力场极其巨大,据广义相对论观点,质量产生引力场,引力场又可看成质量,所以巨引力场可看作质量,产生小引力场,使其公转轨道偏离。类似于电磁波的发散,变化的磁场产生电场,变化的电场产生磁场,传向远方。--译注)
在1962年前,人们一直认为水星自转一周与公转一周的时间是相同的,从而使面对太阳的那一面恒定不变。这与月球总是以相同的半面朝向地球很相似。但在1965年,通过多普勒雷达的观察发现这种理论是错误的。现在我们已得知水星在公转二周的同时自转三周,水星是太阳系中目前唯一已知的公转周期与自转周期共动比率不是1:1的天体。
水星上的温差是整个太阳系中最大的,温度变化的范围为90开到700开。相比之下,金星的温度略高些,但更为稳定。
水星在许多方面与月球相似,它的表面有许多陨石坑而且十分古老;它也没有板块运动。另一方面,水星的密度比月球大得多,(水星 5.43 克/立方厘米 月球 3.34克/立方厘米)。水星是太阳系中仅次于地球,密度第二大的天体。事实上地球的密度高部分源于万有引力的压缩;或非如此,水星的密度将大于地球,这表明水星的铁质核心比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。
巨大的铁质核心半径为1800到1900千米,是水星内部的支配者。而硅酸盐外壳仅有500到600千米厚,至少有一部分核心大概成熔融状。
事实上水星的大气很稀薄,由太阳风带来的被破坏的原子构成。水星温度如此之高,使得这些原子迅速地散逸至太空中,这样与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。
水星的表面表现出巨大的急斜面,有些达到几百千米长,三千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约0.1%(或在星球半径上递减了大约1千米)。
水星上最大的地貌特征之一是Caloris 盆地,直径约为1300千米,人们认为它与月球上最大的盆地Maria相似。如同月球的盆地,Caloris盆地很有可能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面正对盆地处奇特的地形。
除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。
水星有一个小型磁场,磁场强度约为地球的1%。
至今未发现水星有卫星。
通常通过双筒望远镜甚至直接用肉眼便可观察到水星,但它总是十分靠近太阳,在曙暮光中难以看到。Mike Harvey的行星寻找图表指出此时水星在天空中的位置(及其他行星的位置),再由“星光灿烂”这个天象程序作更多更细致的定制。
金星
金星是离太阳第二近,太阳系中第六大行星。在所有行星中,金星的轨道最接近圆,偏差不到1%。
轨道半径: 距太阳 108,200,000 千米 (0.72 天文单位)
行星直径: 12,103.6 千米
质量: 4.869e24 千克
金星 (希腊语: 阿佛洛狄特;巴比伦语: Ishtar)是美和爱的女神,之所以会如此命名,也许是对古代人来说,它是已知行星中最亮的一颗。(也有一些异议,认为金星的命名是因为金星的表面如同女性的外貌。)
金星在史前就已被人所知晓。除了太阳与月亮外,它是最亮的一颗。就像水星,它通常被认为是两个独立的星构成的:晨星叫Eosphorus,晚星叫Hesperus,希腊天文学家更了解这一点。
既然金星是一颗内层行星,从地球用望远镜观察它的话,会发现它有位相变化。伽利略对此现象的观察是赞成哥白尼的有关太阳系的太阳中心说的重要证据。
第一艘访问金星的飞行器是1962年的水手2号。随后,它又陆续被其他飞行器:金星先锋号,苏联尊严7号(第一艘在其他行星上着陆的飞船)、尊严9号(第一次返回金星表面照片[左图])访问(迄今已总共至少20次)。最近,美国轨道飞行器Magellan成功地用雷达产生了金星表面地图。
金星的自转非常不同寻常,一方面它很慢(金星日相当于243个地球日,比金星年稍长一些),另一方面它是倒转的。另外,金星自转周期又与它的轨道周期同步,所以当它与地球达到最近点时,金星朝地球的一面总是固定的。这是不是共鸣效果或只是一个巧合就不得而知了。
金星有时被誉为地球的姐妹星,在有些方面它们非常相像:
-- 金星比地球略微小一些(95%的地球直径,80%的地球质量)。
-- 在相对年轻的表面都有一些环形山口。
-- 它们的密度与化学组成都十分类似。
由于这些相似点,有时认为在它厚厚的云层下面金星可能与地球非常相像,可能有生命的存在。但是不幸的是,许多有关金星的深层次研究表明,在许多方面金星与地球有本质的不同。
金星的大气压力为90个标准大气压(相当于地球海洋深1千米处的压力),大气大多由二氧化碳组成,也有几层由硫酸组成的厚数千米的云层。这些云层挡住了我们对金星表面的观察,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度上升400度,超过了740开(总以使铅条熔化)。金星表面自然比水星表面热,虽然金星比水星离太阳要远两倍。
云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。
地球
地球是距太阳第三颗,也是第五大行星:
轨道半径: 149,600,000 千米 (离太阳1.00 天文单位)
行星直径: 12,756.3 千米
质量: 5.9736e24 千克
地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 大地母亲)
直到16世纪哥白尼时代人们才明白地球只是一颗行星。
地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。它们真是与众不同的漂亮啊!
地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米):
0- 40 地壳
40- 400 Upper mantle - 上地幔
400- 650 Transition region - 过渡区域
650-2700 Lower mantle - 下地幔
2700-2890 D'' layer - D"层
2890-5150 Outer core - 外核
5150-6378 Inner core - 内核
地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。
地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克):
大气 = 0.0000051
海洋 = 0.0014
地壳 = 0.026
地幔 = 4.043
外地核 = 1.835
内地核 = 0.09675
地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为:
34.6% 铁
29.5% 氧
15.2% 硅
12.7% 镁
2.4% 镍
1.9% 硫
0.05% 钛
地球是太阳系中密度最大的星体。
其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。
不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前有八大板块:
北美洲板块 - 北美洲,西北大西洋及格陵兰岛
南美洲板块 - 南美洲及西南大西洋
南极洲板块 - 南极洲及沿海
亚欧板块 - 东北大西洋,欧洲及除印度外的亚洲
非洲板块 - 非洲,东南大西洋及西印度洋
印度与澳洲板块 - 印度,澳大利亚,新西兰及大部分印度洋
Nazca板块 - 东太平洋及毗连南美部分地区
太平洋板块 - 大部分太平洋(及加利福尼亚南岸)
还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。绘成图使得更容易地看清板块边界。
地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。
71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。
地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35摄氏度(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。
丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。
地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天又18小时。
火星
火星为距太阳第四远,也是太阳系中第七大行星:
公转轨道: 离太阳227,940,000 千米 (1.52 天文单位)
行星直径: 6,794 千米
质量: 6.4219e23 千克
火星(希腊语: 阿瑞斯)被称为战神。这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行生”。(趣记:在希腊人之前,古罗马人曾把火星人微言轻农耕之神来供奉。而好侵略扩张的希腊人却把火星作为战争的象征)而三月份的名字也是得自于火星。
火星在史前时代就已经为人类所知。由于它被认为是太阳系中人类最好的住所(除地球外),它受到科幻小说家们的喜爱。但可惜的是那条着名的被Lowell“看见”的“运河”以及其他一些什么的,都只是如Barsoomian公主们一样是虚构的。
第一次对火星的探测是由水手4号飞行器在1965年进行的。人们接连又作了几次尝试,包括1976年的两艘海盗号飞行器。此后,经过长达20年的间隙,在1997年的七月四日,火星探路者号终于成功地登上火星。
火星的轨道是显着的椭圆形。因此,在接受太阳照射的地方,近日点和远日点之间的温差将近30摄氏度。这对火星的气候产生巨大的影响。火星上的平均温度大约为218K(-55℃,-67华氏度),但却具有从冬天的140K(-133℃,-207华氏度)到夏日白天的将近300K(27℃,80华氏度)的跨度。尽管火星比地球小得多,但它的表面积却相当于地球表面的陆地面积。
除地球,火星是具有最多各种有趣地形的固态表面行星。其中不乏一些壮观的地形:
- 奥林匹斯山脉: 它在地表上的高度有24千米(78000英尺),是太阳系中最大的山脉。它的基座直径超过500千米,并由一座高达6千米(20000英尺)的悬崖环绕着;
- Tharsis: 火星表面的一个巨大凸起,有大约4000千米宽,10千米高;
- Valles Marineris: 深2至7千米,长为4000千米的峡谷群;
- Hellas Planitia: 处于南半球,6000多米深,直径为2000千米的冲击环形山。
火星的表面有很多年代已久的环形山。但是也有不少形成不久的山谷、山脊、小山及平原。
在火星的南半球,有着与月球上相似的曲型的环状高地。相反的,它的北半球大多由新近形成的低平的平原组成。这些平原的形成过程十分复杂。南北边界上出现几千米的巨大高度变化。形成南北地势巨大差异以及边界地区高度剧变的原因还不得而知(有人推测这是由于火星外层物增加的一瞬间产生的巨大作用力所形成的)。最近,一些科学家开始怀疑那些陡峭的高山是否在它原先的地方。这个疑点将由“火星全球勘测员”来解决。
火星的内部情况只是依靠它的表面情况资料和有关的大量数据来推断的。一般认为它的核心是半径为1700千米的高密度物质组成;外包一层熔岩,它比地球的地幔更稠些;最外层是一层薄薄的外壳。相对于其他固态行星而言,火星的密度较低,这表明,火星核中的铁(镁和硫化铁)可能含带较多的硫。
如同水星和月球,火星也缺乏活跃的板块运动;没有迹象表明火星发生过能造成像地球般如此多褶皱山系的地壳平移活动。由于没有横向的移动,在地壳下的巨热地带相对于地面处于静止状态。再加之地面的轻微引力,造成了Tharis凸起和巨大的火山。但是,人们却未发现火山最近有过活动的迹象。虽然,火星可能曾发生过很多火山运动,可它看来从未有过任何板块运动。
火星上曾有过洪水,地面上也有一些小河道,十分清楚地证明了许多地方曾受到侵蚀。在过去,火星表面存在过干净的水,甚至可能有过大湖和海洋。但是这些东西看来只存在很短的时间,而且据估计距今也有大约四十亿年了。(Valles Marneris不是由流水通过而形成的。它是由于外壳的伸展和撞击,伴随着Tharsis凸起而生成的)。
在火星的早期,它与地球十分相似。像地球一样,火星上几乎所有的二氧化碳都被转化为含碳的岩石。但由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把它拉到与地球距太阳同等距离的位置,火星表面的温度仍比地球上的冷得多。
火星的那层薄薄的大气主要是由余留下的二氧化碳(95.3%)加上氮气(2.7%)、氩气(1.6%)和微量的氧气(0.15%)和水汽(0.03%)组成的。火星表面的平均大气压强仅为大约7毫巴(比地球上的1%还小),但它随着高度的变化而变化,在盆地的最深处可高达9毫巴,而在Olympus Mons的顶端却只有1毫巴。但是它也足以支持偶尔整月席卷整颗行星的飓风和大风暴。火星那层薄薄的大气层虽然也能制造温室效应,但那些仅能提高其表面5K的温度,比我们所知道的金星和地球的少得多。
火星的两极永久地被固态二氧化碳(干冰)覆盖着。这个冰罩的结构是层叠式的,它是由冰层与变化着的二氧化碳层轮流叠加而成。在北部的夏天,二氧化碳完全升华,留下剩余的冰水层。由于南部的二氧化碳从没有完全消失过,所以我们无法知道在南部的冰层下是否也存在着冰水层。这种现象的原因还不知道,但或许是由于火星赤道面与其运行轨道之间的夹角的长期变化引起气候的变化造成的。或许在火星表面下较深处也有水存在。这种因季节变化而产生的两极覆盖层的变化使火星的气压改变了25%左右(由海盗号测量出)。
但是最近通过哈博望远镜的观察却表明海盗号当时勘测时的环境并非是典型的情况。火星的大气现在似乎比海盗号勘测出的更冷、更干了(详细情况请看来自STScI站点)。
海盗号尝试过作实验去决定火星上是否有生命,结果是否定的。但乐观派们指出,只有两个小样本是合格的,并且又并非来自最好的地方。以后的火星探索者们将继续更多的实验。
火星的卫星
火星有两个小型的近地面卫星。
卫星 距离(千米) 半径(千米) 质量(千克) 发现者 发现日期
火卫一 9000 11 1.08e16 Hall 1877
火卫二 23000 6 1.80e15 Hall 1877
木星
木星是离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的合质量大2倍(地球的318倍)。
公转轨道: 距太阳 778,330,000 千米 (5.20 天文单位)
行星直径: 142,984 千米 (赤道)
质量: 1.900e27 千克
木星(a.k.a. Jove; 希腊人称之为 宙斯)是上帝之王,奥林匹斯山的统治者和罗马国的保护人,它是Cronus(土星)的儿子。
木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓。根据伽利略1610年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个发现,也是赞同哥白尼的日心说的有关行星运动的主要依据;由于伽利略直言不讳地支持哥白尼的理论而被宗教裁判所逮捕,并被强迫放弃自己的信仰,关在监狱中度过了余生。
木星在1973年被先锋10号首次拜访,后来又陆续被先锋11号,旅行者1号,旅行者2号和Ulysses号考查。目前,伽利略号飞行器正在环绕木星运行,并将在以后的两年中不断发回它的有关数据。
气态行星没有实体表面,它们的气态物质密度只是由深度的变大而不断加大(我们从它们表面相当于1个大气压处开始算它们的半径和直径)。我们所看到的通常是大气中云层的顶端,压强比1个大气压略高。
木星由90%的氢和10%的氦(原子数之比, 75/25%的质量比)及微量的甲烷、水、氨水和“石头”组成。这与形成整个太阳系的原始的太阳系星云的组成十分相似。土星有一个类似的组成,但天王星与海王星的组成中,氢和氦的量就少一些了。
木星可能有一个石质的内核,相当于10-15个地球的质量。
内核上则是大部分的行星物质集结地,以液态金属氢的形式存在。这些木星上最普通的形式基础可能只在40亿巴压强下才存在,木星内部就是这种环境(土星也是)。液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了)。在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源。同样在这一层也可能含有一些氦和微量的“冰”。
最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处。水、二氧化碳、甲烷及其他一些简单气体分子在此处也有一点儿。
云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物。然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层)。但这次证明的地表位置十分不同寻常(左图)--基于地球的望远镜观察及更多的来自伽利略号轨道飞船的最近观察提示这次证明所选的区域很可能是那时候木星表面最温暖又是云层最少的地区。
木星和其他气态行星表面有高速飓风,并被限制在狭小的纬度范围内,在连近纬度的风吹的方向又与其相反。这些带中轻微的化学成分与温度变化造成了多彩的地表带,支配着行星的外貌。光亮的表面带被称作区(zones),暗的叫作带(belts)。这些木星上的带子很早就被人们知道了,但带子边界地带的漩涡则由旅行者号飞船第一次发现。伽利略号飞船发回的数据表明表面风速比预料的快得多(大于400英里每小时),并延伸到根所能观察到的一样深的地方,大约向内延伸有数千千米。木星的大气层也被发现相当紊乱,这表明由于它内部的热量使得飓风在大部分急速运动,不像地球只从太阳处获取热量。
木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓。
色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们通过高处云层的洞才能看到低处的云层。
木星表面的大红斑早在300年前就被地球上的观察所知晓(这个发现常归功于卡西尼,或是17世纪的Robert Hooke)。大红斑是个长25,000千米,跨度12,000千米的椭圆,总以容纳两个地球。其他较小一些的斑点也已被看到了数十年了。红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷。类似的情况在土星和海王星上也有。目前还不清楚为什么这类结构能持续那么长的一段时间。
木星向外辐射能量,比起从太阳处收到的来说要多。木星内部很热:内核处可能高达20,000开。该热量的产量是由开尔文-赫尔姆霍兹原理生成的(行星的慢速重力压缩)。(木星并不是像太阳那样由核反应产生能量,它太小因而内部温度不够引起核反应的条件。)这些内部产生的热量可能很大地引发了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程。土星与海王星在这方面与木星类似,奇怪的是,天王星则不。
木星与气态行星所能达到的最大直径一致。如果组成又有所增加,它将因重力而被压缩,使得全球半径只稍微增加一点儿。一颗恒星变大只能是因为内部的热源(核能)关系,但木星要变成恒星的话,质量起码要再变大80倍。
木星有一个巨型磁场,比地球的大得多,磁层向外延伸超过6.5e7千米(超过了土星的轨道!)。(小记:木星的磁层并非球状,它只是朝太阳的方向延伸。)这样一来木星的卫星便始终处在木星的磁层中,由此产生的一些情况在木卫一上有了部分解释。不幸的是,对于未来太空行走者及全身心投入旅行者号和伽利略号设计的专家来说,木星的磁场在附近的环境捕获的高能量粒子将是一个大障碍。这类“辐射”类似于,不过大大强烈于,地球的电离层带的情况。它将马上对未受保护的人类产生致命的影响。
伽利略号号飞行器对木星大气的探测发现在木星光环和最外层大气层之间另存在了一个强辐射带,大致相当于电离层辐射带的十倍强。惊人的是,新发现的带中含有来自不知何方的高能量氦离子。
木星有一个同土星般的光环,不过又小又微弱。它们的发现纯属意料之外,只是由于两个旅行者1号的科学家一再坚持航行10亿千米后,应该去看一下是否有光环存在。其他人都认为发现光环的可能性为零,但事实上它们是存在的。这两个科学家想出的真是一条妙计啊。它们后来被地面上的望远镜拍?/ca>
❹ 银河系里有几个太阳啊
银河系就是太阳系所在的星系。我们太阳系大家族就是在这个星系之中。晚上我们看到的天河,就是它的最密集部分。在银河系里有着上千亿颗各种星星,其中包括太阳及其家属在内,其次是星际星体和尘埃、星云、星团等。如果我们站在银河系外来观看的话,整个银河系就像包在“棉絮团”中合在一起的两片“铜钹”。它的四周比较扁平,中间部分隆起。
在太阳周围的空间里,有一些天体在太阳的引力作用下,按椭圆轨道绕着太阳运动。太阳和围绕它运动的这些天体,构成了一个大家庭,称为太阳系。
太阳系的成员包括太阳和九颗大行星、已证实的66颗天然卫星、已正式编号的3000多颗小行星、为数众多的彗星、流星体以及散布在行星际空间的稀薄气体和尘埃等物质。
太阳
太阳是太阳系的中心天体,是离我们最近的一颗恒星。太阳系的九大行星和其他天体都围绕它运动。太阳与地球的平均距离为14960万公里,半径为69.6万公里,为地球半径的109倍,体积为地球的130万倍,质量为地球的33万倍(占整个太阳系质量的99.86%),平均密度为1.4克/厘米3。太阳具有强大的吸引力,是控制太阳系天体运动的主要力量源泉。
太阳是一个炽热的气体球,表面温度约6000℃,愈向内部温度愈高,中心温度高达1500万K。在这样的高温高压下,太阳中心区不停地进行着氢核聚变成氦核的热核反应,产生巨大的能量。太阳每秒钟释放出约4×1033尔格的能量,相当于0.5亿亿亿马力;其中只有二十二亿分之一的能量辐射到我们的地球,是地球上光和热的主要来源。
太阳是银河系中的一颗普通恒星,位于银道面之北的猎户座旋臂上,距银心约2.3光年,它以每秒250公里的速度绕银心转动,公转一周约需2.5亿年。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。通过对太阳光谱的分析,得知太阳的化学成分与地球几乎相同,只是比例有所差异。太阳上最丰富的元素是氢,其次是氦,还有碳、氮、氧和各种金属。据推算,太阳的寿命约为100亿年,目前已度过约50亿年。
行星
沿椭圆轨道环绕太阳运行的、近似球形的天体叫行星。太阳系有九大行星,按距离太阳的次序是:水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。冥王星离太阳最远,其轨道直径约120亿公里;天文学家认为太阳系的疆界可能比这个范围还要大得多。
九大行星按它们距离太阳的远近分为内行星和外行星两群:水星、金星、地球和火星为内行星;木星、土星、天王星、海王星、冥王星为外围行星。若按它们的质量、大小和结构特征,则分为类地行星和类木行星两类。体积小而密度大、自转慢、卫星少的行星与地球相似,称为类地行星,如水星、金星、火星称为类地行星;体积大而密度小,自转相当快、卫星多的行星称为类木行星,土星、天王星、海王星和冥王星都是类木行星。
行星本身不发射可见光,以其表面反射太阳光而发亮。在星空背景上,行星有明显的相对移动。这种移动都沿着黄道进行。九大行星中,最先被人们知道的是水星、金星、火星、木星和土星。太阳系中的另外三颗行星是在发明天文望远镜后发现的。1781年英国F.W.赫歇耳发现天王星;法国的勒威耶和英国的亚当斯各自推算出海王星的位置,1846年由德国的伽勒所观测到;冥王星则是1930年由美国的汤博发现。
卫星
围绕行星运动的天体叫卫星。月球就是地球的卫星,它像一个忠实的卫士一样,既绕着地球运动,又伴随着地球一起绕太阳运动。除了水星和金星之外,太阳系的其他行星周围都有卫星。到目前为止,连月球在内,太阳系中共发现66颗卫星:地球1颗,火星2颗,木星16颗,土星23颗,天王星15颗,海王星8颗,冥王星1颗。
卫星与行星一样,本身不发射可见光,以其表面反射太阳光而发亮。较大的小行星,如第532号大力神小行星及18号小行星也有卫星。从20世纪50年代起,人类先后发射了一批卫星,称为“人造卫星”。大多为人造地球卫星,也有人造月球卫星和人造行星卫星等等。
彗星
太阳系中比较特殊的成员。环绕太阳运行或行经太阳附近的云雾状天体。绝大部分彗星都沿着很扁的椭圆轨道绕太阳运行。彗星的结构比较复杂,一般说来,中央密集而明亮的固体部分叫彗核,由一些“冰块”(冰冻的水、甲烷、氨等)石头和尘埃组成。核的四周被一种云雾状的物质包围着,叫做彗发。彗核和彗发合成彗头。
1970年,人造卫星在地球大气层外观测两颗明亮的彗星,发现彗头周围还有一层直径达1000万公里的氢云,当彗星逐渐接近太阳时,太阳辐射压力和太阳风把彗星蒸发出来的气体物质推向和太阳相反的方向,形成了彗尾。
彗星绕太阳运动的轨道一般分为三类:抛物线、双曲线和椭圆。在抛物线或双曲线轨道上运行的彗星叫做“非周期彗星”,它们接近太阳一次就一去不复返了。在椭圆轨道上运动的彗星称为“周期彗星”,周期最短的三年多;最长的可以到1000多年。现在发现的彗星有1600多颗。
小行星
小行星是太阳系里的小天体,它们大多分布在火星、木星轨道之间的小行星带中,从1801年意大利天文学家皮亚齐发现第一颗小行星起,小行星的发现至今只有200多年的历史。
按照提丢斯一波得定则,1781年3月,着名天文学家威廉·赫歇耳在英国意外地发现了天王星,它几乎就在定则给出的距离上,从而有力地支持了提丢斯一波得定则,更激发了人们寻找新行星的兴趣。
1801年元旦之夜,人们沉浸在辞旧迎新的欢乐中。意大利西西里岛巴勒莫天文台台长皮亚齐,为编制一本星表而做巡天观测时,发现了一个在火星和木星之间游动的陌生天体,后来计算它的轨道正好与要找的行星吻合,被命名为谷神星。因当时测得的半径只有400多公里(几经重新测定,现在的精确数值略大于1000公里),不能和大行星相比,所以叫做小行星。
翌年3月,德国天文爱好者奥伯斯发现了第二颗小行星——智神星,除了稍小一点儿,它在好些方面与谷神星伯仲难分。接着又连续发现了婚神星和灶神星。19世纪末开始用照相方法寻找小行星之前,已发现322颗小行星。此后小行星的发现逐年增多,特别是近年来由于探测技术及轨道计算方法都有了很大的改进,每年发现的小行星数竟达二三百颗。据统计,到1994年底被正式编号命名的小行星已达5300多颗。天文学家推测,太阳系内小行星大约有50万颗。
按照国际惯例,新发现的小行星先给予临时命名,在发现年代之后加两个拉丁字母,第一个表示发现的时间,以半个月为单位,按字母顺序排列,第二个则表示在这段时间内发现的次序,也按字母顺序排列。新发现的小行星算出轨道后,再经过两个以上不同冲日年代的观测,方能得到正式编号和永久命名。发现者享有对小行星的命名权。设在美国史密松天文台的国际小行星中心,负责收集所有的小行星的观测资料,并进行系统的轨道认证和编号。
最早发现的小行星大多以古希腊、罗马的神话人物命名,后来的许多小行星常常冠以天文学家或城市的名字。1928年,我国着名天文学家张钰哲在美国叶凯士天文台发现了1125号小行星,他将这颗小行星命名为中华,这是中国人发现的第一颗小行星,时至今日,紫金山天文台已累积发现了几百颗新小行星,到1994年底正式编号和命名的有120多颗。
历史上发现小行星最多的是莱因马齐,他共发现了246颗小行星,其次是首先把照相技术引进小行星观测的德国天文学家沃尔夫,他以发现231颗小行星的记录位居第二。
小行星的直径很小,在天文学家所获得的几百颗小行星半径值中,只有几颗较大、较近的小行星是直接测量的,其他都是用光度法、红外波和偏振法测定的。测量表明,直径在50公里以上的小行星大约有560颗,绝大多数小行星的直径都在1公里以下。
至于小行星的质量,除1号谷神星、2号智神星和4号灶神星外,所有的小行星质量都是由它们的直径和假定的密度推算出来的,仅有数量级的概念。一般认为小行星总质量值为1000亿吨,其中谷神星大约占总质量的一半。
小行星的反照率取决于它们的化学组成和表面状况。由于小行星表面各部分的反照率不同,再加上自转,使小行星的亮度产生周期性的变化。根据亮度变化曲线,可测出小行星的自转周期和自转轴的取向,并推测它们的形状。从目前已知自转状况的200多颗小行星看来,自转周期多数在4~16小时,平均为11.47小时。自转轴的取向是随机分布的。直径大于100公里的小行星的形状一般比较规则,接近球形,直径小于100公里的小行星形状则是各种各样的,有的呈长柱形,有的犹如哑铃,还有的甚至像是两块石块粘在一起的。
我国紫金山天文台从50年代末开始对小行星的光电观测,已发表了数十条小行星光度曲线,其中有些是在国际上首次发表的,由于观测质量高,被国外观测者广泛采用。
小行星的公转轨道都是椭圆的,大约有95%的小行星轨道半长径在2.17~3.64天文单位之间,这一空间区域称为小行星的主环带,位于主环带里的小行星称为“主带小行星”。
一小部分小行星离群索居,形成几个特殊的群体。轨道半径大于3.3天文单位的称为远距小行星,其中最着名的是脱罗央群,它们的轨道半径和木星的一样大。从太阳望去,有一些位于木星之前60°,有一些位于木星之后60°,前者叫“希腊群”,后者叫“纯脱罗央群”。
另一个特殊群体是近距小行星,它们的轨道近日点深入到内太阳系,有的甚至跑进地球轨道以内,称为近地小行星。按照轨道近日点的距离和半长径的数值特征,近地小行星又被划分成阿莫尔型、阿波罗型和阿登型。阿莫尔型小行星的轨道特征是近日距都在火星轨道之内——1.02~1.3天文单位,半长径1.39~4.23天文单位,偏心率0.062~0.574,倾角2.2°~52.1°,小行星直径为0.3~38.5公里。现已发现这类小行星有70多颗。阿波罗小行星的轨道特征是近日距小于1.017天文单位,而半长径大于1天文单位,因有一段轨道与地球轨道非常靠近甚至相交,而引起天文学家的特别关注。这类小行星已发现了100多颗。阿登型小行星的轨道半长径都小于1天文单位,近日距也小于1天文单位,远日距略大于1天文单位。这种小行星为数不多,目前仅发现10颗左右。因它们的轨道与地球近似,周期也相差不多,所以比阿波罗型小行星更受到重视。
一些近地小行星在大行星的摄动下,轨道会和地球轨道相交,从而有可能与地球相撞。在过去的几十亿年中,这种事件可能确实发生过。通过空间遥感技术,在地球上已发现了100多个陨石坑,其中91处推测是小行星撞击造成的。据科学家考证,1976年吉林陨石雨的母体就是接近火星轨道的阿波罗型小行星的一个碎块。最近美国科学家提出,导致6500万年前恐龙灭绝的也是一颗陨落的阿波罗型小行星。
虽然小行星撞击地球造成的危害很大,但是这种机率是微乎其微的。研究表明,直径10公里大小的小行星平均1亿年左右才会与地球相撞一次,地球每百万年受到三次较小的小行星的撞击,但其中只有一次发生在陆地上。为了预防这种不测事件,一些国家正在考虑发射专门监测近地小行星的人造地球卫星,及早发现并排除它们。
1978年6月7日,美国天文学家麦克马洪在观测532号大力神小行星掩恒星时,发现它有一颗卫星,命名为1978(532)I,这是天文学家第一次发现小行星有卫星。532号小行星和其卫星的直径分别为243公里和45.6公里,彼此相距977公里。半年后,天文学家又从18号郁神星掩恒星的资料中发现它也有卫星。这对小天体的中心距为460公里,直径分别为135公里和37公里,倘若这是一颗同步卫星,那么在郁神星上看来,这个“月亮”的角直径可达5°24′,视面积几乎是我们月球的120倍。以后,又在重新处理过去的一些小行星掩星资料时发现若干小行星也有卫星,其中包括2号智神星、6号春神星、9号海神星、12号凯神星等,大概有三四十颗。
1980年,美国天文学家利用光斑干涉测量的新技术证明2号智神星确实存在一颗卫星,但是,对于小行星是否有卫星的问题一直悬而未决,一些持反对意见的天文学家认为,人类已经发射了那么多空间探测器,但迄今未发现一颗小行星的卫星,所以小行星有卫星的结论缺乏观测证据。另外,小行星卫星在天体系统中属于什么层次,能否与月球或木卫等相提并论现在也没有定论。
1989年发射的木星探测器“伽利略”在1991年10月飞过第951号小行星加斯帕,圆了天文学家近探小行星的梦想。1993年8月,“伽利略”掠过第243号小行星艾达,进行了多项观测记录。1994年2月,天文学家分析“伽利略”发回的资料,发现艾达附近有一颗比它小得多的卫星,并在英国学术周刊《自然》上发表了艾达与卫星的合影、卫星的放大图像。此后,“伽利略”又发回更新的成像和光谱资料。据此,天文学家估计艾达卫星的直径为1.5公里,发现时距小行星仅100公里,天文学家认为,这是确切发现小行星有卫星的第一例。
小行星虽然很小,但是它们在以往的天文学研究中却曾起过重要的作用。譬如,1873年,德国天文学家伽勒利用8号花神星冲日,1877年英国天文学家吉尔利用4号灶神星冲日测定日地距离,都得到了精确的结果。1930~1931年,433号爱神星大冲时,国际天文学联合会组织了空前规模的国际联测,得到了三角测量所能达到的最精确的日地距离数值—14958万公里。
另外,利用小行星还可以测定行星的质量。当某颗小行星接近大行星时,大行星对它的摄动作用必然影响其轨道,从它轨道的微小变化中可以算出行星的实际质量。1870年,天文学家利用29号爱姆菲特列塔接近木星时所测得的木星质量为太阳质量的1/1047,今天天文学家仍在采用这个数值。水星、金星、土星、火星等行星的质量均是用小行星测定的,测出的值有相当高的准确度。
为了改进和提高星表的精度,国际天文学联合会组织十几个天文台对谷神星等10颗小行星进行长期的监测和归算,从实际的数据及已知的轨道根数求得黄道和天赤道的准确位置。
小行星还为研究太阳系起源和演化提供重要线索。按照现代太阳系形成理论,太阳系是在46亿年前由一团混沌星云凝聚而成的。而当初星云形成太阳系的具体过程已无法从地球和其他行星上找到痕迹了,只有小行星和彗星还保留着许多太阳系形成初期的状态,因此,它们被天文学家称为太阳系早期的“活化石”。
另外,小行星的研究对于发展人类航天事业,保护地球环境,开发宇宙都有重要的意义。特别是近地小行星,它们既是潜在的矿物资源,又是小行星中最容易实现航天近探的目标,“伽利略号”宇宙飞船已于1991年10月29日掠过951号小行星加斯帕,从距离1600公里处飞近的探测器,可以清楚地看到这颗小行星表面50米的细节特征。飞船上的近红外测绘分光仪所作的初步测量表明,加斯帕的形状很不规则,有可能是由一个大的母体中分裂出来的,是一颗金属型小行星。这是宇宙飞船探测的第一例小行星。目前,意大利已制定了一个以皮亚齐命名的近地小行星航天探测计划,准备近探433号爱神星。
太阳系新貌
1957年10月4日,第一颗人造地球卫星发射成功,开辟了人类探测太阳系的新时代。1959年前苏联宇宙飞船绕月飞行,开始了现代太阳系天体表面的研究。它拍摄了月球背面照片,第一次把月球的另一面展示在人们面前。1962年12月14日,美国“水手2号”到达金星附近,揭开了行星近距离探测的新篇章。从那时起,行星探测器纷纷升上天空。至今,对金星作近距离空间考察的探测器已达30个,有一个探测器测量了水星的地形;17个探测器飞到火星附近;测量地球和月亮的探测器就更多了。美国还先后发射了“先锋” 10号、 11号和“旅行者” 1号、 2号考察外行星。截至1989年8月25日“旅行者2号”飞近海王星,太阳系的九大行星已有八个被行星探测器考察过了。目前,太阳系的4个内行星表面状况已初步了解,一大批卫星的地形也现端倪。行星探测器向地球传回成千上万张照片和考察数据,为我们描绘出太阳系天体的一些新貌。
本世纪50年代以来,人造卫星和向月飞行的航天器,开辟了观测地球的新途径。同步卫星在离地面36000公里高空,拍摄到清晰的地球照片。最为精彩的是“阿波罗17号”在向月球飞行中所拍摄的地球照片。只见蓝色的地球,上面海洋陆地都轮廓分明,浩浩苍穹,地球出现在天上。
过去,人们认为地球的形状是个圆球或像个桔子。通过人造卫星的观测,发现地球是一个不规则的球体,赤道以南比赤道以北高7.6米,南极高地心距离比北极短15.2米。地球的形状像个梨,梨柄在北极;梨底在南极。在60年代,空间探测器还发现,由于太阳风的影响,地球磁场被压缩成一个彗星状的区域(磁层),在这个区域里,有两条高能带电粒子的辐射带——范艾伦带。
1969年7月21日,美国的“阿波罗11号”宇宙飞船把第一批宇航员送上了月球,实现了人类登月的夙愿。宇航员利用带去的月球车,在月面上进行了多学科的考察,收集到270多千克月岩和土壤的样品。通过分析这些样品,发现月岩的化学成分与地球岩石基本相似,没有发现可生存的月球有机物,也不存在古微生物的证据。在月球上还发现有地震那样的月震,但月震很弱,最大的月震只有1~2级。通过测定月球的放射性元素,得知月球和地球同龄,它们都有46亿岁了。
空间探测结果告诉我们,月球已不是唯一布满环形山的天体了。水星、金星、火星的表面都很像月球,环形山星罗棋布,既有高山,也有平原。火星上的奥林匹斯火山口,是太阳系中最大的火山口,直径为600多公里。探测器发回的信息告诉我们,土卫四和土卫五上的环形山,多得与月球不相上下。
金星探测器为我们描述了金星风光:金星天空(云)是橙黄色的,金星的大部分表面都覆盖着一层“浮土”。金星表面的温度是460℃左右,气压约为地球的90倍。在金星上,既有山脉也有峡谷,一条2000多公里长的大裂缝,自南向北穿过金星赤道,裂缝最深的地方有2900米左右。这是目前在太阳系天体上发现的一条最大的裂缝。
金星上空闪电频繁,每分钟达20多次,有一次竟持续了15分钟。土星的大气中也常常是电光闪闪,雷声隆隆,“旅行者2号”曾记录到数千次威力比地球上强烈数万倍的闪电。
自从1877年意大利天文学家斯基帕雷利提出火星运河以来,火星上的水一直为人们所关注。1973年,美国天文学家休古宁注意到火星赤道以南的“太阳湖”地区异常明亮,他认为是有水存在。后来“海盗号”飞船发现那里上空的水蒸汽也比别的地方丰富。经天文学家们研究,并从该地区的雷达探测发现,在一个直径为300~500公里地带,雷达回波随季节而变化,这也是水的特征。“水手号”还发现火星表面有干涸的河床。科学家们认为,火星表面虽然现在没有水,但在古代却存在过海洋。
在对太阳系行星研究中,进度较大的是火山。1979年3月,“旅行者1号”发现木卫一上至少有8座活火山活动,其中有一座正以每小时1600公里的速度喷发着气体和固体物质,喷发物的高度达480公里。以后又发现木卫二和海卫一有活火山活动。除活火山外,在太阳系固体行星表面上复杂的地形形成过程中,火山起着相当重要的作用。
本世纪上半叶,除了地球磁场外,其他行星是否存在磁场,是行星物理学研究的一个新课题。20多年来,大量空间飞行器携带着磁场计、太阳风粒子谱仪和带电粒子望远镜飞到行星附近进行近距离的直接探测。现在,除冥王星外,其他八大行星都被宇宙飞船考察过了。这些空间飞行器发回地球的数据表明,地球、木星、土星都具有极强的磁场;水星的磁场较地球、木星、土星的弱一些;金星的磁场比地球弱得多;火星存在磁场,但有无固有磁场目前尚无定论。此外,“旅行者2号”在天王星和海王星附近也进行了磁场测量,结果表明这两颗大行星都有磁场存在。行星存在磁场,磁场与行星周围运动物质相互作用,便可以形成一种特殊区域——磁层。磁层中有等粒子体套、尖点、等离子体片、辐射带和等粒子体层等。地球磁层里有内外两个辐射带,分别由质子和电子组成。空间飞行器发回的数据表明,水星、木星、土星都具有磁层;金星和火星的磁层面目尚不很清楚;天王星和海王星也可能有磁层存在。
地球上有极光,其他行星上是否也有极光?过去有人认为木星上也会有极光,但探测了20多年,一直未发现。1979年,“旅行者1号”发现木星背着太阳的一面,有长达三万多公里的极光,在地球以外第一次探测到太阳系天体上的极光。
土星曾以它有光环缭绕而被称为最美丽的行星。土星光环是怎样组成的呢?1980年11月,“旅行者1号”在飞近土星时,对土星光环进行了“面对面”的考察。原来,土星光环平面内有100~1000条大小不等的环,环内还有环,很像唱片上的纹路。有些光环还像发辫那样互相扭结在一起,难解难分。土星光环是由无数颗大小不等的微粒组成的。
现在,土星已不是唯一有光环的行星了。1977年,美国、中国、印度、南非等国的天文学家在观测天王星掩恒星时,意外地发现天王星也有光环。1979年3月,“旅行者1号”考察木星时,发现木星也有一条宽达数千公里、厚约30公里的光环。1989年8月,“旅行者2号”飞到海王星附近探测时,发现海王星也存在光环。经研究,太阳系九大行星中,4个类木行星(木星、土星、天王星和海王星)均有光环结构;4个类地行星(水星、金星、地球和火星)则一颗都没有光环。冥王星离我们太远,它有没有环仍然是一个谜。
1979年以后,宇宙飞船先后访问了土星,相继发现了土星的一些新卫星。现在发现土星共有23颗卫星,是太阳系中最大的一个家族。木星有16颗卫星,是第二大家族。“旅行者”1号和2号在行星际空间的大旅行,使地面基地观测已知的33颗太阳系天然卫星增加到66个,极大地丰富了人类关于太阳系天体的知识宝库。
参考资料:/
❺ 太阳系八大行星介绍和他们的西方传说
水星Mercury
水星最接近太阳,是太阳系中最小的行星。水星在直径上小于木卫三和土卫六,但它更重。
水星
基本数据
公转轨道: 距太阳 57,910,000 千米 (0.38 天文单位) 水星直径: 4,880 千米 质量: 3.30e23 千克
名称来源
在古罗马神话中水星是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字
金星Venu
金星是离太阳第二近,太阳系中第六大行星。在所有行星中,金星的轨道最接近圆,偏差不到1%。
金星
基本数据
轨道半径: 距太阳 108,200,000 千米 (0.72 天文单位) 行星直径: 12,103.6 千米 质量: 4.869e24 千克
名称来源
金星 (希腊语:阿佛洛狄忒;巴比伦语: Ishtar)是美和爱的女神,之所以会如此命名,也许是对古代人来说,它是已知行星中最亮的一颗。(也有一些异议,认为金星的命名是因为金星的表面如同女性的外貌。)
地球Earth
地球是距太阳第三颗,也是第五大行星
基本数据
轨道半径: 149,600,000 千米 (离太阳1.00 天文单位) 行星直径: 12,756.3 千米 质量: 5.9736e24 千克
名称来源
地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 大地母亲) 直到16世纪哥白尼时代人们才明白地球只是一颗行星。 它也是太阳系唯一有水的行星。 地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。它们真是与众不同的漂亮啊!
主要成分
地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米): 0- 40 地壳 40- 400 Upper mantle - 上地幔 400- 650 Transition region - 过渡区域 650-2700 Lower mantle - 下地幔 2700-2890 D'' layer - D"层 2890-5150 Outer core - 外核 5150-6378 Inner core - 内核 地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。 地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克): 大气 = 0.0000051 海洋 = 0.0014 地壳 = 0.026 地幔 = 4.043 外地核 = 1.835 内地核 = 0.09675 地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为: 34.6% 铁 29.5% 氧 15.2% 硅 12.7% 镁 2.4% 镍 1.9% 硫 0.05% 钛 地球是太阳系中密度最大的星体。 其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。 不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前有八大板块: 北美洲板块 - 北美洲,西北大西洋及格陵兰岛 南美洲板块 - 南美洲及西南大西洋 南极洲板块 - 南极洲及沿海 亚欧板块 - 东北大西洋,欧洲及除印度外的亚洲 非洲板块 - 非洲,东南大西洋及西印度洋 印度与澳洲板块 - 印度,澳大利亚,新西兰及大部分印度洋 Nazca板块 - 东太平洋及毗连南美部分地区 太平洋板块 - 大部分太平洋(及加利福尼亚南岸) 还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。绘成图使得更容易地看清板块边界。 地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。 71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。 地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35摄氏度(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。 丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。 地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天又18小时。
火星Mar
火星为距太阳第四远,也是太阳系中第七大行星,在我国古代又称荧惑,因为火星呈红色,荧荧像火,亮度常有变化;而且在天空中运动,有时从西向东,有时又从东向西,情况复杂,令人迷惑,所以我国古代叫它“荧惑”,有“荧荧火光,离离乱惑。”之意。
基本数据
公转轨道: 离太阳227,940,000 千米 (1.52 天文单位) 行星直径: 6,794 千米 质量: 6.4219e23 千克
名称来源
火星(希腊语: 阿瑞斯)被称为战神。这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行星”。(趣记:在希腊人之前,古罗马人曾把火星人微言轻农耕之神来供奉。而好侵略扩张的希腊人却把火星作为战争的象征)而三月份的名字也是得自于火星。
木星Jupiter
木星是离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的合质量大2倍(地球的318倍)。
基本数据
公转轨道: 距太阳 778,330,000 千米 (5.20 天文单位) 行星直径: 142,984 千米 (赤道) 质量: 1.900e27 千克
名称来源
木星(a.k.a. Jove; 希腊人称之为 宙斯)是上帝之王,奥林匹斯山的统治者和罗马国的保护人,它是Cronus(土星)的儿子。
土星Saturn
土星是离太阳第六远的行星,也是八大行星中第二大的行星:
基本数据
公转轨道: 距太阳 1,429,400,000 千米 (9.54 天文单位) 行星直径: 120,536 千米 (赤道) 质量: 5.68e26 千克
名称来源
在罗马神话中,土星(Saturn)是农神的名称。希腊神话中的农神Cronus是Uranus(天王星)和该亚的儿子,也是宙斯(木星)的父亲。土星也是英语中“星期六”(Saturday)的词根。
天王星Uranu
天王星是太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。
基本数据
公转轨道: 距太阳2,870,990,000 千米 (19.218 天文单位) 行星直径: 51,118 千米(赤道) 质量: 8.683e25 千克
名称来源
乌拉诺斯是古希腊神话中的宇宙之神,是最早的至高无上的神。他是该亚的儿子兼配偶,是Cronus(农神土星)、独眼巨人和泰坦(奥林匹斯山神的前辈)的父亲。
海王星Neptune
海王星是环绕太阳运行的第八颗行星,也是太阳系中第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。
海王星
基本信息
公转轨道: 距太阳 4,504,000,000 千米 (30.06 天文单位) 行星直径: 49,532 千米(赤道) 质量: 1.0247e26 千克
名称来源
在古罗马神话中海王星(古希腊神话:波塞冬(Poseidon))代表海神
❻ 有几大洋和几大洲
地球有七大洲和四大洋组成,七大洲分别是:亚洲、非洲、欧洲、大洋洲、北美洲、南美洲以及南极洲,四大洋分别是:太平洋、大西洋、印度洋以及北冰洋。
地球是太阳系八大行星之一,按离太阳由近及远的次序排为第三颗,也是太阳系中直径、质量和密度最大的类地行星,距离太阳1.5亿公里。地球自西向东自转,同时围绕太阳公转。现有40亿~46亿岁,它有一个天然卫星——月球,二者组成一个天体系统——地月系统。46亿年以前起源于原始太阳星云。
地球赤道半径6378.137千米,极半径6356.752千米,平均半径约6371千米,赤道周长大约为40076千米,呈两极稍扁赤道略鼓的不规则的椭圆球体。地球表面积5.1亿平方公里,其中71%为海洋,29%为陆地,在太空上看地球呈蓝色。
❼ 太阳系八大行星
[编辑本段]【水星】
英文名:Mercury
水星最接近太阳,是太阳系中最小最轻的行星。水星在直径上小于木卫三和土卫六。
水星基本参数:
轨道半长径: 5791万 千米 (0.38 天文单位)
公转周期: 87.70 天
自转方向:自西向东
平均轨道速度: 47.89 千米/每秒
轨道偏心率: 0.206
轨道倾角: 7.0 度
行星赤道半径: 2440 千米
质量(地球质量=1): 0.0553
密度: 5.43 克/立方厘米
自转周期: 58.65 日
卫星数: 无
公转轨道: 距太阳 57,910,000 千米 (0.38 天文单位)
在古罗马神话中水星是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字。
早在公元前3000年的苏美尔时代,人们便发现了水星,古希腊人赋于它两个名字:当它初现于清晨时称为阿波罗,当它闪烁于夜空时称为赫耳墨斯。不过,古希腊天文学家们知道这两个名字实际上指的是同一颗星星,赫拉克赖脱(公元前5世纪之希腊哲学家)甚至认为水星与金星并非环绕地球,而是环绕着太阳在运行。
仅有水手10号探测器于1973年和1974年三次造访水星。它仅仅勘测了水星表面的45%(并且很不幸运,由于水星太靠近太阳,以致于哈博望远镜无法对它进行安全的摄像)。
水星的轨道偏离正圆程度很大,近日点距太阳仅四千六百万千米,远日点却有7千万千米,它在轨道近日点所具有的围绕太阳的缓慢岁差现象,被称为“水星近日点轨道进动”。(岁差:地轴进动引起春分点向西缓慢运行,速度每年0.2",约25800年运行一周,使回归年比恒星年短的现象。分日岁差和行星岁差两种,后者是由行星引力产生的黄道面变动引起的。)在十九世纪,天文学家们对水星的轨道半径进行了非常仔细的观察,但无法运用牛顿力学对此作出适当的解释。存在于实际观察到的值与预告值之间的细微差异是一个次要(每千年相差七分之一度)但困扰了天文学家们数十年的问题。有人认为在靠近水星的轨道上存在着另一颗行星(有时被称作Vulcan,“祝融星”),由此来解释这种差异,结果最终的答案颇有戏剧性:爱因斯坦的广义相对论。在人们接受认可此理论的早期,水星运行的正确预告是一个十分重要的因素。(水星因太阳的引力场而绕其公转,而太阳引力场极其巨大,据广义相对论观点,质量产生引力场,引力场又可看成质量,所以巨引力场可看作质量,产生小引力场,使其公转轨道偏离。类似于电磁波的发散,变化的磁场产生电场,变化的电场产生磁场,传向远方。--译注)
在1962年前,人们一直认为水星自转一周与公转一周的时间是相同的,从而使面对太阳的那一面恒定不变。这与月球总是以相同的半面朝向地球很相似。但在1965年,通过多普勒雷达的观察发现这种理论是错误的。现在我们已得知水星在公转二周的同时自转三周,水星是太阳系中目前唯一已知的公转周期与自转周期共动比率不是1:1的天体。
由于上述情况及水星轨道极度偏离正圆,将使得水星上的观察者看到非常奇特的景像,处于某些经度的观察者会看到当太阳升起后,随着它朝向天顶缓慢移动,将逐渐明显地增大尺寸。太阳将在天顶停顿下来,经过短暂的倒退过程,再次停顿,然后继续它通往地平线的旅程,同时明显地缩小。在此期间,星星们将以三倍快的速度划过苍空。在水星表面另一些地点的观察者将看到不同的但一样是异乎寻常的天体运动。
水星上的温差是整个太阳系中最大的,温度变化的范围为90开到700开。相比之下,金星的温度略高些,但更为稳定。
水星在许多方面与月球相似,它的表面有许多陨石坑而且十分古老;它也没有板块运动。另一方面,水星的密度比月球大得多,(水星 5.43 克/立方厘米 月球 3.34克/立方厘米)。水星是太阳系中仅次于地球,密度第二大的天体。事实上地球的密度高部分源于万有引力的压缩;或非如此,水星的密度将大于地球,这表明水星的铁质核心比地球的相对要大些,很有可能构成了行星的大部分。因此,相对而言,水星仅有一圈薄薄的硅酸盐地幔和地壳。
巨大的铁质核心半径为1800到1900千米,是水星内部的支配者。而硅酸盐外壳仅有500到600千米厚,至少有一部分核心大概成熔融状。
事实上水星的大气很稀薄,由太阳风带来的被破坏的原子构成。水星温度如此之高,使得这些原子迅速地散逸至太空中,这样与地球和金星稳定的大气相比,水星的大气频繁地被补充更换。
水星的表面表现出巨大的急斜面,有些达到几百千米长,三千米高。有些横处于环形山的外环处,而另一些急斜面的面貌表明他们是受压缩而形成的。据估计,水星表面收缩了大约0.1%(或在星球半径上递减了大约1千米)。
水星上最大的地貌特征之一是Caloris 盆地(右图),直径约为1300千米,人们认为它与月球上最大的盆地Maria相似。如同月球的盆地,Caloris盆地很有可能形成于太阳系早期的大碰撞中,那次碰撞大概同时造成了星球另一面正对盆地处奇特的地形(左图)。
除了布满陨石坑的地形,水星也有相对平坦的平原,有些也许是古代火山运动的结果,但另一些大概是陨石所形成的喷出物沉积的结果。
水手号探测器的数据提供了一些近期水星上火山活动的初步迹象,但我们需要更多的资料来确认。
令人惊讶的是,水星北极点的雷达扫描(一处未被水手10号勘测的区域)显示出在一些陨石坑的被完好保护的隐蔽处存在冰的迹象。
水星有一个小型磁场,磁场强度约为地球的1%。
至今未发现水星有卫星。
通常通过双筒望远镜甚至直接用肉眼便可观察到水星,但它总是十分靠近太阳,在曙暮光中难以看到。Mike Harvey的行星寻找图表指出此时水星在天空中的位置(及其他行星的位置),再由“星光灿烂”这个天象程序作更多更细致的定制。
[编辑本段]【金星】
金星英文名:Venus
八大行星之一,中国古代称之为太白或太白金星。它有时是晨星,黎明前出现在东方天空,被称为“启明”;有时是昏星,黄昏后出现在西方天空,被称为“长庚”。金星是全天中除太阳和月亮外最 亮的星,犹如一颗耀眼的钻石,于是古希腊人称它为阿佛洛狄忒--爱与美的女神,而罗马人则称它为维纳斯--美神。
金星基本参数
自转方向:自东向西
公转周期:224.701天
平均轨道速度:35.03 千米/每秒
轨道偏心率:0.007
轨道倾角:3.4 度
赤道直径:12,103.6千米
直 径:12105千米
质量(地球质量=1):0.8150
密度:5.24 克/立方厘米
卫星数量:0
公转半径:108,208,930 km(0.72 天文单位)
表面面积:4.6亿平方千米
自转时间:243.02天
逃逸速度:10.4 千米/秒
金星在史前就已被人所知晓。除了太阳与月亮外,它是最亮的一颗。
金星是一颗内层行星,从地球用望远镜观察它的话,会发现它有位相变化。伽利略对此现象的观察是赞成哥白尼的有关太阳系的太阳中心说的重要证据。
第一艘访问金星的飞行器是1962年的水手2号。随后,它又陆续被其他飞行器:金星先锋号,苏联尊严7号、尊严9号访问。
金星的自转非常不同寻常,一方面它很慢(金星日相当于243个地球日,比金星年稍长一些),另一方面它是倒转的。另外,金星自转周期又与它的轨道周期同步,所以当它与地球达到最近点时,金星朝地球的一面总是固定的。这是不是共鸣效果或只是一个巧合就不得而知了。
金星有时被誉为地球的姐妹星,在有些方面它们非常相像:
-- 金星比地球略微小一些(95%的地球直径,80%的地球质量)。
-- 在相对年轻的表面都有一些环形山口。
-- 它们的密度与化学组成都十分类似。
由于这些相似点,有时认为在它厚厚的云层下面金星可能与地球非常相像,可能有生命的存在。但是不幸的是,许多有关金星的深层次研究表明,在许多方面金星与地球有本质的不同。
金星的大气压力为90个标准大气压(相当于地球海洋深1千米处的压力),大气大多由二氧化碳组成,也有几层由硫酸组成的厚数千米的云层。这些云层挡住了我们对金星表面的观察,使得它看来非常模糊。这稠密的大气也产生了温室效应,使金星表面温度上升400度,超过了740开(足以使铅条熔化)。金星表面自然比水星表面热,虽然金星比水星离太阳要远倍。云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。
[编辑本段]【地球】
英文:earth
地球是距太阳第三颗,也是第五大行星:
轨道半径: 149,600,000 千米 (离太阳1.00 天文单位)
行星直径: 12,756.3 千米
质量: 5.9736e24 千克
赤道引力(地球=1) 1.00
逃逸速度(公里/秒) 11.2
自转周期(日) 0.9973
公转周期(日)365.2422
黄赤交角(度) 23.26
反照率 0.30
自转方向:自西向东
地球是唯一一个不是从希腊或罗马神话中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 大地母亲)
直到16世纪哥白尼时代人们才明白地球只是一颗行星。
地球,当然不需要飞行器即可被观测,然而我们直到二十世纪才有了整个行星的地图。由空间拍到的图片应具有合理的重要性;举例来说,它们大大帮助了气象预报及暴风雨跟踪预报。它们真是与众不同的漂亮啊!
地球由于不同的化学成分与地震性质被分为不同的岩层(深度-千米):
0- 40 地壳
40- 400 Upper mantle - 上地幔
400- 650 Transition region - 过渡区域
650-2700 Lower mantle - 下地幔
2700-2890 D'' layer - D"层
2890-5150 Outer core - 外核
5150-6378 Inner core - 内核
地壳的厚度不同,海洋处较薄,大洲下较厚。内核与地壳为实体;外核与地幔层为流体。不同的层由不连续断面分割开,这由地震数据得到;其中最有名的有数地壳与上地幔间的莫霍面-不连续断面了。
地球的大部分质量集中在地幔,剩下的大部分在地核;我们所居住的只是整体的一个小部分(下列数值×10e24千克):
大气 = 0.0000051
海洋 = 0.0014
地壳 = 0.026
地幔 = 4.043
外地核 = 1.835
内地核 = 0.09675
地核可能大多由铁构成(或镍/铁),虽然也有可能是一些较轻的物质。地核中心的温度可能高达7500K,比太阳表面还热;下地幔可能由硅,镁,氧和一些铁,钙,铝构成;上地幔大多由olivene,pyroxene(铁/镁硅酸盐),钙,铝构成。我们知道这些金属都来自于地震;上地幔的样本到达了地表,就像火山喷出岩浆,但地球的大部分还是难以接近的。地壳主要由石英(硅的氧化物)和类长石的其他硅酸盐构成。就整体看,地球的化学元素组成为:
34.6% 铁
29.5% 氧
15.2% 硅
12.7% 镁
2.4% 镍
1.9% 硫
0.05% 钛
地球是太阳系中密度最大的星体。
其他的类地行星可能也有相似的结构与物质组成,当然也有一些区别:月球至少有一个小内核;水星有一个超大内核(相当于它的直径);火星与月球的地幔要厚得多;月球与水星可能没有由不同化学元素构成的地壳;地球可能是唯一一颗有内核与外核的类地行星。值得注意的是,我们的有关行星内部构造的理论只是适用于地球。
不像其他类地行星,地球的地壳由几个实体板块构成,各自在热地幔上漂浮。理论上称它为板块说。它被描绘为具有两个过程:扩大和缩小。扩大发生在两个板块互相远离,下面涌上来的岩浆形成新地壳时。缩小发生在两个板块相互碰撞,其中一个的边缘部份伸入了另一个的下面,在炽热的地幔中受热而被破坏。在板块分界处有许多断层(比如加利福尼亚的San Andreas断层),大洲板块间也有碰撞(如印度洋板块与亚欧板块)。目前有六大板块:
美洲板块 - 北美洲,南美洲,西大西洋及格陵兰岛
南极板块 - 南极洲及沿海
欧亚板块 - 东北大西洋,欧洲及除印度外的亚洲
非洲板块 - 非洲,东南大西洋及西印度洋
印度洋板块 - 印度,澳大利亚,新西兰及大部分印度洋
太平洋板块 - 大部分太平洋(及加利福尼亚南岸)
还有超过廿个小板块,如阿拉伯,菲律宾板块。地震经常在这些板块交界处发生。绘成图使得更容易地看清板块边界。
地球的表面十分年轻。在50亿年的短周期中(天文学标准),不断重复着侵蚀与构造的过程,地球的大部分表面被一次又一次地形成和破坏,这样一来,除去了大部分原始的地理痕迹(比如星体撞击产生的火山口)。这样一来,地球上早期历史都被清除了。地球至今已存在了45到46亿年,但已知的最古老的石头只有40亿年,连超过30亿年的石头都屈指可数。最早的生物化石则小于39亿年。没有任何确定的记录表明生命真正开始的时刻。
71%的地球表面为水所覆盖。地球是行星中唯一一颗能在表面存在有液态水(虽然在土卫六的表面存在有液态乙烷与甲烷,木卫二的地下有液态水)。我们知道,液态水是生命存在的重要条件。海洋的热容量也是保持地球气温相对稳定的重要条件。液态水也造成了地表侵蚀及大洲气候的多样化,目前这是在太阳系中独一无二的过程(很早以前,火星上也许也有这种情况)。
地球的大气由77%的氮,21%氧,微量的氩、二氧化碳和水组成。地球初步形成时,大气中可能存在大量的二氧化碳,但是几乎都被组合成了碳酸盐岩石,少部分溶入了海洋或给活着的植物消耗了。现在板块构造与生物活动维持了大气中二氧化碳到其他场所再返回的不停流动。大气中稳定存在的少量二氧化碳通过温室效应对维持地表气温有极其深远的重要性。温室效应使平均表面气温提高了35摄氏度(从冻人的-21℃升到了适人的14℃);没有它海洋将会结冰,而生命将不可能存在。
丰富的氧气的存在从化学观点看是很值得注意的。氧气是很活泼的气体,一般环境下易和其他物质快速结合。地球大气中的氧的产生和维持由生物活动完成。没有生命就没有充足的氧气。
地球与月球的交互作用使地球的自转每世纪减缓了2毫秒。当前的调查显示出大约在9亿年前,一年有481天又18小时。
地球的卫星:月球(月亮)[moon]
❽ 太阳系怎么起源的
太阳系是在银河系的区域运动中起源的。谈及我们所处的地球,这是宇宙中,毋庸置疑的“文明摇篮”。我们都知道,地球上的各种生态环境,简直得天独厚适合文明的生长,时至今日,NASA的科研人员,也只发现了六颗“类地行星”而已。
但是,很多人缺乏了解的是,太阳系这个空间,其实比“地球”更加少见。至少,我们道现在为止还没有发现任何和“太阳系”有着高度相似的小型星系。
木星并不是太阳系土生土长的行星,而是从外部闯入,最终被太阳的引力系统同化的行星。在它到来之际,碾碎了那几十颗类地行星;因此,太阳系才成了如今的样子。这件事,大概发生在距今三十亿年之前。