导航:首页 > 印度资讯 > 印度数学繁荣时期有哪些

印度数学繁荣时期有哪些

发布时间:2022-04-22 16:12:52

❶ 古代印度数学最大的成就之一是什么

数学是一门严谨的学科,数学计算的最重要基础是“阿拉伯数字”,而这个名称却是一个历史的错误。其实,这些数字从“1”到“0”与十进位法,都是源自古印度。由于这些数字由阿拉伯人传到了西方,于是西方人便将这些数字称为“阿拉伯数字”,以后,一传十,十传百,世界各地也都认同了这个说法,“阿拉伯数字”也就约定俗成了。

古代印度数学最大的成就之一是数码的发明。2世纪时古代印度人发明了1至9的数码,用梵文字头来表示。

除1至9的数码外,印度人还发明了零号。在8世纪算术书中的一些算题,有小点“。”的记号,叫做“空”。“空”有两个意思,或为尚不清楚的东西,有待于发现填补上去;或为位值记数法,如3与7中间空一格为3口7,表示307,为了避免不清楚,空格外加上小点为3.7,也就是说十位数一无所有,这就相当于现在的零号。小点写作0,至少在9世纪中叶就定下了。

印度的数码首先传入了中东地区,8世纪时一位花拉子模人名叫穆罕穆德,用阿拉伯文写了一部介绍数码和计算方法的书。12世纪,阿拉伯文的数学着作传入了欧洲、中亚细亚等地。当时欧洲人使用拉丁数字字母,笔画冗长笨拙,故很快就普遍采用印度数字字母。欧洲人以为这些数码是阿拉伯人发明的,故称之为阿拉伯数字。公元13、14世纪阿拉伯数码传入我国,但并未得到推广。这是因为我国有自己的记数法,也是十进位制,而且汉字一至九的笔画也很简单。直到20世纪,我国数学家与其他国家数学家交流频繁,需要采用国际上通用的阿拉伯数码,阿拉伯数码才在我国流行起来。

印度数码的发明,对世界数学的发展有重大的意义。印度数码虽经过了长时间的发展过程,但在古代时期就已基本形成。所以说,数码的发明是古代印度数学的突出成就之一。

❷ 印度数学繁荣时期有哪些着名的数学家

阿利耶波多,婆罗摩笈多,婆什迦罗

❸ 古代印度人在数学上有哪些成就

古印度在数学方面有相当大的成就,在世界数学史上有重要地位。自哈拉巴文化时期起,古印度人用的就是十进位制,但是早期还没有位值法。
大约到了公元7世纪以后,古印度才有了位值法记数,不过开始时还没有“0”的符号,只用空一格来表示。公元9世纪后半叶有了零的符号,写作“.”。
这时,古印度的十进制位值法记数就完备了。后来这种记数法为中亚地区许多民族采用,又经过阿拉伯人传到了欧洲,逐渐演变为现今世界上通用的“阿拉伯记数法”。
所以说,阿拉伯数字并不是阿拉伯人创造的,他们只是起了传播作用。而真正对阿拉伯数字有贡献的,正是古印度人。
《准绳经》是现存古印度最早的数学着作,这是一部讲述祭坛修筑的书,大约成于公元前5至前4世纪,其中包含有一些几何学方面的知识。
这部书表明,他们那时已经知道了勾股定理,并使用圆周率π为3.09,古印度人在天文计算的时候已经运用了三角形,公元499年成书的《圣使集》中有关数学的内容共有66条,包括了算术运算、乘方、开方以及一些代数学、几何学和三角学的规则。
圣使还研究了两个无理数相加的问题,得到正确的公式,在三角学方面他又引进了正矢函数,他算出的π为3.1416。
公元7~13世纪是古印度数学成就最辉煌的时期,其间的着名人物有梵藏(约589~?)、大雄(9世纪)、室利驮罗(999~?)和作明(1114~?)。
梵藏约于628年写成了《梵明满悉檀多》,对许多数学问题进行了深人的探讨,梵藏是古印度最早引进负数概念的人,他还提出负数的运算方法。
而大雄继续了他前人的工作,他的主要着作是《计算精华》。他认识到零乘以任何一个数都等于零,不过他又错误地认为以零除一个数仍然等于这个数。
大雄对分数的研究也很有意义,他认识到以一个分数除另外一个分数,等于把这个分数的分子分母颠倒相乘。
现存的室利驮罗的数学着作有《算法概要》一书,据说他还有一部专论二次方程的着作。他的主要工作是研究二次方程的解法。
在这一时期,数学上成就最大的要数作明。他的《历数全书头珠》中的《嬉有章》和《因数算法章》反映了古印度数学的最高成就,是那个时期的代表作。
作明对零进行了进一步的研究,正确地指出以零除一个数为无限大。他继续研究二次方程求解的问题,知道一个数的平方根有两个数,一正一负。
他还明确地指出负数的平方根是没有意义的。作明在不定方程的研究中取得了十分显着的成绩,他用巧妙的方法解决了许多不定方程的求整数解的问题。

❹ 外国数学发展史

你把你需要的留下,把不需要的删去!

一.古埃及数学
埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200年左右,形成一个统一的国家。尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。
公元前2900年以后,埃及人建造了许多金字塔,作为法老的坟墓。从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。例如基底直角的误差与底面正方形两边同正北的偏差都非常小。
现今对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850~前1650年之间,相当于中国的夏代。
埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。埃及算术主要是加法,而乘法是加法的重复。他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是 1的分数)的和。莱因德纸草书用很大的篇幅来记载2/n(n从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用 3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。
总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。

二.美索不达米亚数学
西亚美索不达米亚地区(即底格里斯河与幼发拉底河流域)是人类早期文明发祥地之一。一般称公元前19世纪至公元前6世纪间该地区的文化为巴比伦文化,相应的数学属巴比伦数学。这一地区的数学传统上溯至约公元前二千年的苏美尔文化,后续至公元1世纪基督教创始时期。对巴比伦数学的了解,依据于19世纪初考古发掘出的楔形文字泥板,有约300块是纯数学内容的,其中约200块是各种数表,包括乘法表、倒数表、平方和立方表等。大约在公元前1800~前1600年间,巴比伦人已使用较系统的以60为基数的数系(包括60进制小数)。由于没有表示零的记号,这种记数法是不完善的。
巴比伦人的代数知识相当丰富,主要用文字表达,偶尔使用记号表示未知量。
在公元前1600年前的一块泥板上,记录了许多组毕达哥拉斯三元数组(即勾股数组)。据考证,其求法与希腊人丢番图的方法相同。巴比伦人还讨论了某些三次方程和可化为二次方程的四次方程。
巴比伦的几何属于实用性质的几何,多采用代数方法求解。他们有三角形相似及对应边成比例的知识。用公式 (с为圆的周长)求圆面积,相当于取π=3。
巴比伦人在公元前 3世纪已较频繁地用数学方法记载和研究天文现象,如记录和推算月球与行星的运动,他们将圆周分为360度的做法一直沿用至今。

三.玛雅数学
对于玛雅数学的了解,主要来自一些残剩的玛雅时代石刻。对这些石刻上象形文字的释读表明:玛雅人很早就创造了位值制的记数系统,具体记数方式又分两种:第一种叫横点记数法;第二种叫头形记数法。横点记数法以一点表示1,以一横表示5,以一介壳状 表示0,但不是0符号。
迄今所知道的玛雅数学知识就是如此,其中只显示加法和进位两种。关于形的认识,只能从玛雅古建筑中体会到一些。这些古建筑从外形看都很整齐划一,可以判断当时玛雅人对几何图形已有一定的知识。

四.印度数学
印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。
印度数学最早有文字记录的是吠陀时代,其数学材料混杂在婆罗门教和印度教的经典《吠陀》当中,年代很不确定,今人所考定的年代出入很大,其年代最早可上溯到公元前10世纪,最晚至公元前3世纪。
由几何计算导致了一些求解一、二次代数方程问题,印度用算术方法给出求解公式。
耆那教的经典由宗教原理、数学原理、算术和天文等几部分构成,流传下来的原始经典较少,不过流传一些公元前5世纪至公元后2世纪的注释。
公元773年,印度数码传入阿拉伯国家,后来欧洲人通过阿拉伯人接受了,成为今天国际通用的所谓阿拉伯数码。这种印度数码与记数法成为近世欧洲科学赖以进步的基础。中国唐朝印度裔天文历学家瞿昙悉达于718年翻译的印度历法《九执历》当中也有这些数码,可是未被中国人所接受。
由于印度屡被其他民族征服,使印度古代天文数学受外来文化影响较深,除希腊天文数学外,也不排除中国文化的影响,然而印度数学始终保持东方数学以计算为中心的实用化特色。与其算术和代数相比,印度人在几何方面的工作显得十分薄弱,最具特色与影响的成就是其不定分析和对希腊三角术的推进。

❺ 印度数学的印度数学 三个重要时期

印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。由于河谷文化的象形文字至今不能解读,所以对这一时期印度数学的实际情况了解得很少。

❻ 数学史的发展大致可以分为几个时期分别有哪些代表人物

1 (前3500-前500)数学起源与早期发展:古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了.
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响.(其中贵族数学是说希腊贵族人研究数学,平民不接触)

❼ 古代印度数学有哪些发明和成就

古代印度数学最大的成就之一是数码的发明。2世纪时古代印度人发明了1至9的数码,用梵文字头来表示。

除1至9的数码外,印度人还发明了零号。在8世纪算术书中的一些算题,有小点“。”的记号,叫做“空”。“空”有两个意思,或为尚不清楚的东西,有待于发现填补上去;或为位值记数法,如3与7中间空一格为3口7,表示307,为了避免不清楚,空格外加上小点为3.7,也就是说十位数一无所有,这就相当于现在的零号。小点写作0,至少在9世纪中叶就定下了。

❽ 古代印度数学最大的成就是什么

古代印度数学最大的成就之一是数码的发明。2世纪时古代印度人发明了1至9的数码,用梵文字头来表示。除1至9的数码外,印度人还发明了零号。

❾ 印度数学发展的特点及其对世界数学发展的影响

在印度,整数的十进制值制记数法产生于6世纪以前,用9个数字和表示零的小圆圈,再借助于位值制便可写出任何数字。由此建立了算术运算,包括整数和分数的四则运算法则;开平方和开立方的法则等。对于零不单是看成一无所有或空位,还当作一个数来参加运算。

印度数学的起源和古老民族的数学起源一样,是在生产实际需要的基础上产生的。但是印度数学的发展也有一个特殊的因素,便是数学和历法一样,是在婆罗门祭礼的影响下得以充分发展的。再加上佛教的交流和贸易的往来,印度数学和近东。



(9)印度数学繁荣时期有哪些扩展阅读:

印度人的几何学是凭经验的,不追求逻辑上严谨的证明,只注重发展实用的方法,一般与测量相联系,侧重于面积、体积的计算。其贡献远远比不上在算术和代数方面的贡献大。在三角学方面,印度人用半弦(即正弦)代替了希腊人的全弦,制作正弦表。

还证明了一些简单的三角恒等式等等。在三角学所做的研究是十分重要的。印度数学的数学发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗荼人时期,史称河谷文化;随后是吠陀时期;其次是悉檀多时期。

❿ 印度数学有着怎样的历史

印度数学的历史,可以追溯到印度河文明时期,当时出现的祭坛以及城市建设和规划,需要一些基本的测量和计算。那时期的商人在与西亚国家进行贸易时,也需要一些基本的数学知识。可以说,印度古代数学的产生与宗教有着密切的关系,在吠陀文献中就包含着明显的数学内容。数学的发展推动了天文学的发展,反过来,天文学也促进了数学的进步,这也与印度的宗教传统有明显关系。

阅读全文

与印度数学繁荣时期有哪些相关的资料

热点内容
印度什么性药好 浏览:350
制裁下的伊朗10月份经济怎么样了 浏览:686
越南语迷彩是什么意思 浏览:33
中国哪里有糖果梦工厂 浏览:280
哪里有中国航空图 浏览:716
2002年拍过什么越南片子 浏览:926
伊朗海鲜有什么 浏览:163
越南沿海城市怎么样 浏览:835
怎么拆信封的印尼 浏览:354
日本大名相当于中国什么 浏览:622
印尼泛印集团怎么样 浏览:798
苏格兰为什么给意大利庆祝 浏览:430
印度以什么树木为主 浏览:490
印尼最近有什么节假日 浏览:963
jojo意大利面怎么做 浏览:897
娶越南姑娘一般要多少钱 浏览:370
美国要求关闭中国领事馆是什么意思 浏览:190
标准的中国行政区图在哪里查 浏览:829
90万越南盾等于人民币多少钱 浏览:877
伊朗博主长什么样 浏览:867